Home
Class 11
MATHS
Determine the angle B of the triangle wi...

Determine the angle B of the triangle with vertices `A(-2,1)`, `B(2,3)` and `C(-2,-4)`.

Text Solution

AI Generated Solution

The correct Answer is:
To determine the angle \( B \) of the triangle with vertices \( A(-2, 1) \), \( B(2, 3) \), and \( C(-2, -4) \), we will follow these steps: ### Step 1: Calculate the lengths of the sides of the triangle We will use the distance formula to find the lengths of sides \( AB \), \( BC \), and \( AC \). **Distance Formula:** \[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \] #### Calculate \( AB \): - \( A(-2, 1) \) and \( B(2, 3) \) \[ AB = \sqrt{(2 - (-2))^2 + (3 - 1)^2} = \sqrt{(2 + 2)^2 + (3 - 1)^2} = \sqrt{4^2 + 2^2} = \sqrt{16 + 4} = \sqrt{20} = 2\sqrt{5} \] #### Calculate \( BC \): - \( B(2, 3) \) and \( C(-2, -4) \) \[ BC = \sqrt{(-2 - 2)^2 + (-4 - 3)^2} = \sqrt{(-4)^2 + (-7)^2} = \sqrt{16 + 49} = \sqrt{65} \] #### Calculate \( AC \): - \( A(-2, 1) \) and \( C(-2, -4) \) \[ AC = \sqrt{(-2 - (-2))^2 + (-4 - 1)^2} = \sqrt{(0)^2 + (-5)^2} = \sqrt{25} = 5 \] ### Step 2: Use the Cosine Rule to find angle \( B \) The Cosine Rule states: \[ c^2 = a^2 + b^2 - 2ab \cos(C) \] For angle \( B \): \[ AB^2 = AC^2 + BC^2 - 2 \cdot AC \cdot BC \cdot \cos(B) \] Substituting the lengths we calculated: - \( AB = 2\sqrt{5} \) - \( BC = \sqrt{65} \) - \( AC = 5 \) \[ (2\sqrt{5})^2 = 5^2 + (\sqrt{65})^2 - 2 \cdot 5 \cdot \sqrt{65} \cdot \cos(B) \] \[ 20 = 25 + 65 - 10\sqrt{65} \cos(B) \] \[ 20 = 90 - 10\sqrt{65} \cos(B) \] \[ 10\sqrt{65} \cos(B) = 90 - 20 \] \[ 10\sqrt{65} \cos(B) = 70 \] \[ \cos(B) = \frac{70}{10\sqrt{65}} = \frac{7}{\sqrt{65}} \] ### Step 3: Calculate angle \( B \) To find \( B \): \[ B = \cos^{-1}\left(\frac{7}{\sqrt{65}}\right) \] Using a calculator to find the angle: \[ B \approx 32.32^\circ \] ### Final Answer The angle \( B \) of the triangle is approximately \( 32.32^\circ \). ---
Promotional Banner

Topper's Solved these Questions

  • STRAIGHT LINES

    MODERN PUBLICATION|Exercise Exercise 10(a)|10 Videos
  • STRAIGHT LINES

    MODERN PUBLICATION|Exercise Exercise 10(b)|7 Videos
  • STATISTICS

    MODERN PUBLICATION|Exercise Chapter Test|7 Videos
  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise Chapter Test (3)|12 Videos

Similar Questions

Explore conceptually related problems

area of the triangle with vertices A(3,4,-1), B(2,2,1) and C(3,4,-3) is :

The area of the triangle with vertices A(3,4,-1),B(2,2,1) and C(3,4,-3) is :

The cosine of the angle of the triangle with vertices A(1,-1,2),B(6,11,2) and C(1,2,6) is

Find the area of the triangle whose vertices are A(1,2,3) , B(2,3,1) and C(3,1,2)

Find the area of the triangle whose vertices are A(3,-1,2),B(1,-1,-3) and C(4,-3,1)

Find the equation of the bisector of angle A ofthe triangle whoe vertices are A(4,3),B(0,0) and C(2,3)

Find the angles of a triangle whose vertices are A(0,-1,-2),B(3,1,4) and C(5,7,1)