To find the equations of the internal angle bisectors of the triangle formed by the lines \(3x + 4y - 6 = 0\), \(12x - 5y - 3 = 0\), and \(4x - 3y + 12 = 0\), we will follow these steps:
### Step 1: Identify the equations of the sides of the triangle.
The equations of the sides of the triangle are:
1. \(L_1: 3x + 4y - 6 = 0\) (AB)
2. \(L_2: 12x - 5y - 3 = 0\) (BC)
3. \(L_3: 4x - 3y + 12 = 0\) (AC)
### Step 2: Find the internal angle bisector between lines \(L_1\) and \(L_2\).
For lines \(L_1\) and \(L_2\):
- \(a_1 = 3\), \(b_1 = 4\), \(c_1 = -6\)
- \(a_2 = 12\), \(b_2 = -5\), \(c_2 = -3\)
Calculate \(a_1 a_2 + b_1 b_2\):
\[
3 \cdot 12 + 4 \cdot (-5) = 36 - 20 = 16 > 0
\]
Since this value is greater than 0, we use the formula for the internal angle bisector:
\[
\frac{a_1 x + b_1 y + c_1}{\sqrt{a_1^2 + b_1^2}} = -\frac{a_2 x + b_2 y + c_2}{\sqrt{a_2^2 + b_2^2}}
\]
Substituting the values:
\[
\frac{3x + 4y - 6}{\sqrt{3^2 + 4^2}} = -\frac{12x - 5y - 3}{\sqrt{12^2 + (-5)^2}}
\]
Calculating the denominators:
\[
\sqrt{3^2 + 4^2} = \sqrt{9 + 16} = 5, \quad \sqrt{12^2 + (-5)^2} = \sqrt{144 + 25} = 13
\]
Thus, we have:
\[
\frac{3x + 4y - 6}{5} = -\frac{12x - 5y - 3}{13}
\]
Cross-multiplying gives:
\[
13(3x + 4y - 6) = -5(12x - 5y - 3)
\]
Expanding both sides:
\[
39x + 52y - 78 = -60x + 25y + 15
\]
Rearranging terms:
\[
39x + 60x + 52y - 25y - 78 - 15 = 0
\]
Combining like terms:
\[
99x + 27y - 93 = 0
\]
Dividing through by 3:
\[
33x + 9y - 31 = 0
\]
### Step 3: Find the internal angle bisector between lines \(L_2\) and \(L_3\).
For lines \(L_2\) and \(L_3\):
- \(a_1 = 12\), \(b_1 = -5\), \(c_1 = -3\)
- \(a_2 = 4\), \(b_2 = -3\), \(c_2 = 12\)
Calculate \(a_1 a_2 + b_1 b_2\):
\[
12 \cdot 4 + (-5) \cdot (-3) = 48 + 15 = 63 > 0
\]
Using the angle bisector formula:
\[
\frac{12x - 5y - 3}{\sqrt{12^2 + (-5)^2}} = -\frac{4x - 3y + 12}{\sqrt{4^2 + (-3)^2}}
\]
Calculating the denominators:
\[
\sqrt{12^2 + (-5)^2} = 13, \quad \sqrt{4^2 + (-3)^2} = 5
\]
Thus, we have:
\[
\frac{12x - 5y - 3}{13} = -\frac{4x - 3y + 12}{5}
\]
Cross-multiplying gives:
\[
5(12x - 5y - 3) = -13(4x - 3y + 12)
\]
Expanding both sides:
\[
60x - 25y - 15 = -52x + 39y - 156
\]
Rearranging terms:
\[
60x + 52x - 25y - 39y + 156 - 15 = 0
\]
Combining like terms:
\[
112x - 64y + 141 = 0
\]
### Step 4: Find the internal angle bisector between lines \(L_3\) and \(L_1\).
For lines \(L_3\) and \(L_1\):
- \(a_1 = 4\), \(b_1 = -3\), \(c_1 = 12\)
- \(a_2 = 3\), \(b_2 = 4\), \(c_2 = -6\)
Calculate \(a_1 a_2 + b_1 b_2\):
\[
4 \cdot 3 + (-3) \cdot 4 = 12 - 12 = 0
\]
Since this value is equal to 0, we use the second formula:
\[
\frac{4x - 3y + 12}{\sqrt{4^2 + (-3)^2}} = \frac{3x + 4y - 6}{\sqrt{3^2 + 4^2}}
\]
Calculating the denominators:
\[
\sqrt{4^2 + (-3)^2} = 5, \quad \sqrt{3^2 + 4^2} = 5
\]
Thus, we have:
\[
\frac{4x - 3y + 12}{5} = \frac{3x + 4y - 6}{5}
\]
Cross-multiplying gives:
\[
4x - 3y + 12 = 3x + 4y - 6
\]
Rearranging terms:
\[
4x - 3x - 3y - 4y + 12 + 6 = 0
\]
Combining like terms:
\[
x - 7y + 18 = 0
\]
### Final Result:
The equations of the internal angle bisectors of the triangle are:
1. \(33x + 9y - 31 = 0\)
2. \(112x - 64y + 141 = 0\)
3. \(x - 7y + 18 = 0\)