Home
Class 12
MATHS
Let A={1,\ 2,\ 3,\ ,\ 9} and R be the r...

Let `A={1,\ 2,\ 3,\ ,\ 9}` and `R` be the relation on `AxxA` defined by `(a ,\ b)R\ (c ,\ d)` if `a+d=b+c` for all `(a ,\ b),\ (c ,\ d) in AxxA` . Prove that `R` is an equivalence relation and also obtain the equivalence class [(2, 5)].

Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    MODERN PUBLICATION|Exercise FREQUENTLY ASKED QUESTIONS|15 Videos
  • RELATIONS AND FUNCTIONS

    MODERN PUBLICATION|Exercise QUESTIONS FROM NCERT EXEMPLAR|5 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise MOCK TEST SECTION D|6 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

Let A={1,2,3,~ 9}~ and~ R be the relation on A xx A defined by (a,b)R(c,d) if a+d=b+c for all (a,b),(c,d)in A xx A Prove that R is an equivalence relation and also obtain the equivalence class [(2,5)]

Let A={1,2,3,......,9} and R be the relation in AxA defined by (a,b)R(c,d) if a+d=b+c for (a,b),(c,d) in AxA. Prove that R is an equivalence relation.Also obtain the equivalence class [(2,5)].

Let A={1,2,3,......, 12} and R be a relation in A xx A defined by (a, b) R (c,d) if ad=bc AA(a,b),(c,d) in A xx A . Prove that R is an equivalence relation. Also obtain the equivalence class [(3,4)] .

Let N be the set of all natural numbers and let R be a relation on N xx N, defined by (a,b)R(c,d)ad=bc for all (a,b),(c,d)in N xx N. Show that R is an equivalence relation on N xx N. Also,find the equivalence class [(2,6)].

Let N be the set of all natural numbers and let R be a relation on N×N , defined by (a , b)R(c , d) iff a d=b c for all (a , b),(c , d) in N × Ndot . Show that R is an equivalence relation on N × N .

Prove that the relation R on the set N xx N defined by (a,b)R(c,d)a+d=b+c for all (a,b),(c,d)in N xx N is an equivalence relation.Also,find the equivalence classes [(2, 3)] and [(1,3)].

Let A={1,2,3,4} . Let R be the equivalence relation on AxxA defined by (a,b)R(c,d) iff a+d=b+c . Find {(1,3)} .

Statement-1: The relation R on the set N xx N defined by (a, b) R (c, d) iff a+d = b+c for all a, b, c, d in N is an equivalence relation. Statement-2: The union of two equivalence relations is an equivalence relation.

Let R be a relation on NN defined by (a,b)R(c,d)hArr a+d=b+c for all (a;b),(c,d)in N xx N show that (a,b)R(a,b) for all (a,b)in N xx N

Statement-1: The relation R on the set N xx N defined by (a, b) R (c, d) iff a+d = b+c for all a, b, c, d in N is an equivalence relation. Statement-2: The intersection of two equivalence relations on a set A is an equivalence relation.