Home
Class 12
MATHS
If f(x)=(2x+3)/(3x-2),xne(2)/(3), then f...

If `f(x)=(2x+3)/(3x-2),xne(2)/(3)`, then find fof (x).

Text Solution

AI Generated Solution

The correct Answer is:
To find \( f(f(x)) \) where \( f(x) = \frac{2x + 3}{3x - 2} \) and \( x \neq \frac{2}{3} \), we will follow these steps: ### Step 1: Substitute \( f(x) \) into itself We need to calculate \( f(f(x)) \). This means we will substitute \( f(x) \) into the function \( f \). \[ f(f(x)) = f\left(\frac{2x + 3}{3x - 2}\right) \] ### Step 2: Replace \( x \) in \( f(x) \) Now we will replace \( x \) in the function \( f(x) \) with \( \frac{2x + 3}{3x - 2} \): \[ f\left(\frac{2x + 3}{3x - 2}\right) = \frac{2\left(\frac{2x + 3}{3x - 2}\right) + 3}{3\left(\frac{2x + 3}{3x - 2}\right) - 2} \] ### Step 3: Simplify the numerator First, simplify the numerator: \[ 2\left(\frac{2x + 3}{3x - 2}\right) + 3 = \frac{4x + 6}{3x - 2} + 3 \] To combine these fractions, we need a common denominator: \[ = \frac{4x + 6 + 3(3x - 2)}{3x - 2} = \frac{4x + 6 + 9x - 6}{3x - 2} = \frac{13x}{3x - 2} \] ### Step 4: Simplify the denominator Now simplify the denominator: \[ 3\left(\frac{2x + 3}{3x - 2}\right) - 2 = \frac{6x + 9}{3x - 2} - 2 \] Again, we need a common denominator: \[ = \frac{6x + 9 - 2(3x - 2)}{3x - 2} = \frac{6x + 9 - 6x + 4}{3x - 2} = \frac{13}{3x - 2} \] ### Step 5: Combine the results Now we can combine the simplified numerator and denominator: \[ f(f(x)) = \frac{\frac{13x}{3x - 2}}{\frac{13}{3x - 2}} = \frac{13x}{13} = x \] ### Final Answer Thus, we find that: \[ f(f(x)) = x \]
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    MODERN PUBLICATION|Exercise EXERCISE 1 (c) (Long Answer Type Questions (I))|10 Videos
  • RELATIONS AND FUNCTIONS

    MODERN PUBLICATION|Exercise EXERCISE 1 (d) (Short Answer Type Questions)|8 Videos
  • RELATIONS AND FUNCTIONS

    MODERN PUBLICATION|Exercise EXERCISE 1 (b) (Long Answer Type Questions (I))|15 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise MOCK TEST SECTION D|6 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

If f(x)=(3x-1)/(x+1),xne-1 , then find fof (x).

If f(x)=(4x+3)/(6x-4),x!=(2)/(3), show that fof (x)=x for all x!=(2)/(3). What is the inverse of f?

If f(x)=(x)/(x-1),xne1 , then show that fof (x) = x.

If f:R-:R be defined by f(x)=(3-x^(3))^(1/3), then find fof(x)

If f(x)=(3x-1)/(x+1),xne ____________, then fof (x) is____________

IF f(x)=2x^(3)+3x^(2)+5 , then find the value of f(2) .

If f:RrarrR,g:RrarrR are defined by f(x)=3x-1 and g(x)=x^(2)+1 , then find (i) fof(x^(2)+1) (ii) fog(2) (iii) gof(2a-3)

f(x)=(4x+3)/(6x-4);x!=(2)/(3) Show that fof(x)=x for all x except x=(2)/(3)

Consider a function f(x)=(3x+4)/(x-2), xne2 . Find a function g(x) on a suitable domain such that : (gof) (x) = x = (fog) (x).

If f(x)={(x-2,,xlt2),(3,,x=2),(x+2,,xgt3):} ,then find f(8).