Home
Class 12
MATHS
Let '**' be a binary operation defined o...

Let `'**'` be a binary operation defined on `NxxN` by :
`(a, b)**(c, d)=(a+c,b+d)`.
Prove that `'**'` is commutative and associative.

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    MODERN PUBLICATION|Exercise Objective Type Questions (A. Multiple Choice Questions)|30 Videos
  • RELATIONS AND FUNCTIONS

    MODERN PUBLICATION|Exercise Objective Type Questions (B. Fill in the Blanks)|5 Videos
  • RELATIONS AND FUNCTIONS

    MODERN PUBLICATION|Exercise EXERCISE 1 (e) (Short Answer Type Questions)|25 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise MOCK TEST SECTION D|6 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

Let '**' be a binary operation defined on NxxN by : (a, b)**(c, d)=(a+c,b+d) . Find (1,2)**(2,3) .

Let A = N xx N and ** be the binary opertation on A defined by (a, b) ** (c, d) = (a+c, b+d) . Show that ** is commutative and associative.

Let A=RR and * be the binary operation on A defined by (a,b)*(c,d)=(a+c,b+d). show that is commutative and associative.Find the identity element for * on A.

Let R_(0) denote the set of all non-zero real numbers and let A=R_(0)xx R_(0) .If * is a binary operation on A defined by (a,b)*(c,d)=(ac,bd) for all (a,b),(c,d)in A* show that * is both commutative and associative on A( ii) Find the identity element in A

Let A=NN and ? be the binary operation on A defined by (a,b)?(c,d)=(a+c,b+d ).Show that? is commutative and associative. Find the identity element for ? on A,if any.

Let A=NxNa n d^(prime)*' be a binaryoperation on A defined by (a , b)*(C , d)=(a c , b d) for all a , b , c , d , in Ndot Show that '*' is commutative and associative binary operation on A.

Let '**' be a binary operation on Q defined by : a**b=(2ab)/(3) . Show that '**' is commutative as well as associative.

Let A=N uu{0}xx N uu{0} and let * be a binary operation on A defined by (a,b)*(c,d)=(a+c,b+d) for all (a,b),(c,d)in A. Show that * is commutative on A.

Let * be a binary operation on N defined by a*b = a^(b) for all a,b in N show that * is neither commutative nor associative