Home
Class 12
MATHS
If a**b=3a+4b, then the value of 3**4 is...

If `a**b=3a+4b`, then the value of `3**4` is……………

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( a \star b = 3a + 4b \) and we need to find the value of \( 3 \star 4 \), we can follow these steps: ### Step-by-Step Solution: 1. **Identify the operation**: The operation defined is \( a \star b = 3a + 4b \). Here, \( a \) and \( b \) are any two numbers. 2. **Substitute the values**: We need to find \( 3 \star 4 \). In this case, \( a = 3 \) and \( b = 4 \). 3. **Apply the operation**: Substitute \( a \) and \( b \) into the operation: \[ 3 \star 4 = 3(3) + 4(4) \] 4. **Calculate each term**: - Calculate \( 3(3) \): \[ 3(3) = 9 \] - Calculate \( 4(4) \): \[ 4(4) = 16 \] 5. **Add the results**: \[ 3 \star 4 = 9 + 16 = 25 \] 6. **Final answer**: Therefore, the value of \( 3 \star 4 \) is \( 25 \).
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    MODERN PUBLICATION|Exercise COMPETITION FILE (Questions from JEE Main)|7 Videos
  • RELATIONS AND FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (1)|12 Videos
  • RELATIONS AND FUNCTIONS

    MODERN PUBLICATION|Exercise Revision Exercise|18 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise MOCK TEST SECTION D|6 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

If a binary operation * is defined on the set Z of integers as a*b=3a-b, then the value of (2*3)*4 is (a) 2 (b) 3 (c) 4 (d) 5

If a^(*)b=a^(2)+b^(2), then the value of (4*5)*3 is a^(*)b=a^(2)+b^(2), then the value of (4*5)*3 is (4^(2)+5^(2))+3^(2)( ii )(4+5)^(2)+3^(2)41^(2)+3^(2)( iv) (4+5+3)^(2)

If a/b=3/4 then find the value of 7a-4b:3a+b .

If a/b=4/3, then the value of (6a+4b)/(6a-5b) is -1 (b) 3 (c) 4 (d) 5

If x =a , y = b is the solution of the pair of equation x - y = 2 and x + y = 4 then the value of 3a + 4b is …….. .

If a=-1, b=-2/3, c=-3/4 , then the value of a+b+c is

a**b#c=(ab)^(c) : a#b**c=a^(b).c , then find the value of 3#4**5+3**4#5