Home
Class 12
MATHS
Find the inverse of the matrix : A=[{:...

Find the inverse of the matrix :
`A=[{:(0,1,2),(0,1,1),(1,0,2):}]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \( A = \begin{pmatrix} 0 & 1 & 2 \\ 0 & 1 & 1 \\ 1 & 0 & 2 \end{pmatrix} \), we will follow these steps: ### Step 1: Calculate the Determinant of Matrix A The determinant of a \( 3 \times 3 \) matrix \( A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \) can be calculated using the formula: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix: \[ A = \begin{pmatrix} 0 & 1 & 2 \\ 0 & 1 & 1 \\ 1 & 0 & 2 \end{pmatrix} \] We can expand the determinant along the first row: \[ \text{det}(A) = 0 \cdot (1 \cdot 2 - 1 \cdot 0) - 1 \cdot (0 \cdot 2 - 1 \cdot 1) + 2 \cdot (0 \cdot 0 - 1 \cdot 1) \] Calculating this gives: \[ = 0 - 1 \cdot (-1) + 2 \cdot (-1) = 1 - 2 = -1 \] ### Step 2: Calculate the Matrix of Cofactors Next, we need to find the matrix of cofactors. The cofactor \( C_{ij} \) is given by \( (-1)^{i+j} \) times the determinant of the submatrix obtained by deleting the \( i^{th} \) row and \( j^{th} \) column. Calculating the cofactors: - \( C_{11} = \text{det}\begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} = (1 \cdot 2 - 1 \cdot 0) = 2 \) - \( C_{12} = -\text{det}\begin{pmatrix} 0 & 1 \\ 1 & 2 \end{pmatrix} = -(0 \cdot 2 - 1 \cdot 1) = 1 \) - \( C_{13} = \text{det}\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = (0 \cdot 0 - 1 \cdot 1) = -1 \) - \( C_{21} = -\text{det}\begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix} = -(1 \cdot 2 - 2 \cdot 0) = -2 \) - \( C_{22} = \text{det}\begin{pmatrix} 0 & 2 \\ 1 & 2 \end{pmatrix} = (0 \cdot 2 - 2 \cdot 1) = -2 \) - \( C_{23} = -\text{det}\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = -(0 \cdot 0 - 1 \cdot 1) = 1 \) - \( C_{31} = \text{det}\begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix} = (1 \cdot 1 - 2 \cdot 1) = -1 \) - \( C_{32} = -\text{det}\begin{pmatrix} 0 & 2 \\ 0 & 1 \end{pmatrix} = -(0 \cdot 1 - 2 \cdot 0) = 0 \) - \( C_{33} = \text{det}\begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} = (0 \cdot 1 - 1 \cdot 0) = 0 \) The cofactor matrix is: \[ C = \begin{pmatrix} 2 & 1 & -1 \\ -2 & -2 & 1 \\ -1 & 0 & 0 \end{pmatrix} \] ### Step 3: Transpose the Cofactor Matrix to Get the Adjoint The adjoint of matrix \( A \) is the transpose of the cofactor matrix: \[ \text{adj}(A) = C^T = \begin{pmatrix} 2 & -2 & -1 \\ 1 & -2 & 0 \\ -1 & 1 & 0 \end{pmatrix} \] ### Step 4: Calculate the Inverse of Matrix A The inverse of matrix \( A \) is given by: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] Since \( \text{det}(A) = -1 \): \[ A^{-1} = -1 \cdot \begin{pmatrix} 2 & -2 & -1 \\ 1 & -2 & 0 \\ -1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} -2 & 2 & 1 \\ -1 & 2 & 0 \\ 1 & -1 & 0 \end{pmatrix} \] ### Final Result Thus, the inverse of the matrix \( A \) is: \[ A^{-1} = \begin{pmatrix} -2 & 2 & 1 \\ -1 & 2 & 0 \\ 1 & -1 & 0 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise Examples (QUESTIONS FROM NCERT EXAMPLAR|4 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(a) (SHORT ANSWER TYPE QUESTIONS)|20 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise FREQUENTLY ASKED QUESTIONS|17 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

Find the inverse of the matrix [(1,2,3),(0,1,4),(5,6,0)]

Find the inverse of the matrix A = {:((1,2,-2),(-1,3,0),(0,-2,1)):} by using elementary row transformations.

By using elementary row operations, find the inverse of the matrix A=[{:(3,-1,-2),(2,0,-1),(3,-5," "0):}].

Find the inverse of the matrix {:((1,0,1),(0,2,3),(1,2,1)):} by using elementary column transformations .

Find the inverse of the matrix [[0,1,21,2,33,1,1]]

The element in the first row and third column of the inverse of the matrix [(1,2,-3),(0,1,2),(0,0,1)] is

The elements in the first row and third column of the inverse of the matrix [(1,2,3),(0,1,2),(0,0,1)] is

Find the inverse of the matrix [{:(3,-1,-2),(2," "0,-1),(3,-5," "0):}]

MODERN PUBLICATION-DETERMINANTS-Examples (FREQUENCY ASKED QUESTIONS)
  1. Given A=((2,-3),(-4,7)) compute A^(-1) and show that 2A^(-1)=9I-A

    Text Solution

    |

  2. For the matrix A=[1 1 1 1 2-3 2-1 3] . Show that A^3-6A^2+5A+11\ I3=O ...

    Text Solution

    |

  3. Find the inverse of the matrix : A=[{:(0,1,2),(0,1,1),(1,0,2):}]

    Text Solution

    |

  4. If A=[(1,-2,3),(0,-1,4),(-2,2,1)], find (A')^(-1)

    Text Solution

    |

  5. If A=[2 3 1-4]and B=[1-2-1 3], then verify that (A B)^(-1)=B^(-1)A^(-1...

    Text Solution

    |

  6. If A=[{:(1,3,3),(1,4,3),(1,3,4):}], verify A.(adj.A)=|A|I and find A^(...

    Text Solution

    |

  7. Find the inverse of each of the matrices given below : Computer (A...

    Text Solution

    |

  8. Find A^(-1) if A=|(0,1,1),(1,0,1),(1,1,0)| and show that A^(-1)=(A^(2)...

    Text Solution

    |

  9. x+2y=9 2x+4y=7

    Text Solution

    |

  10. Solve the following system of equations by matrix method : 3x-4y=5 a...

    Text Solution

    |

  11. Using matrices, solve the following system of equations: 4x+3y+3z=6...

    Text Solution

    |

  12. Solve the following system of equations by matrix method : x+y-2=3...

    Text Solution

    |

  13. Using elementary transformations, find the inverse of the matrix A=(8 ...

    Text Solution

    |

  14. If A=[[2,3,4],[1,-1,0],[0,1,2]], find A^(-1). Hence, solve the system...

    Text Solution

    |

  15. If A=[{:(2,3,10),(4,-6,5),(6,9,-20):}], find A^(-1). Using A^(-1), sol...

    Text Solution

    |

  16. Use product [{:(1,-1,2),(0,2,-3),(3,-2,4):}][{:(-2,0,1),(9,2,-3),(6,1,...

    Text Solution

    |

  17. Solve, using matrices : 2x-y+3z=5, 3x+2y-z=7 and 4x+5y-5z=9

    Text Solution

    |

  18. Solve the following systems of linear homogenous equations : 2x+y-3z...

    Text Solution

    |

  19. Solve the following systems of linear homogenous equations : 3x+2y+7...

    Text Solution

    |

  20. The sum of three numbers is -1. If we multiply second number by 2, thi...

    Text Solution

    |