Home
Class 12
MATHS
If A=[{:(2,3,10),(4,-6,5),(6,9,-20):}], ...

If `A=[{:(2,3,10),(4,-6,5),(6,9,-20):}]`, find `A^(-1)`. Using `A^(-1)`, solve the system of equations : `{:((2)/(x)+(3)/(y)+(10)/(z)=2),((4)/(x)-(6)/(y)+(5)/(z)=5),((6)/(x)+(9)/(y)-(20)/(z)=-4):}`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \( A \) and solve the given system of equations, we will follow these steps: ### Step 1: Find the Determinant of Matrix \( A \) The matrix \( A \) is given as: \[ A = \begin{pmatrix} 2 & 3 & 10 \\ 4 & -6 & 5 \\ 6 & 9 & -20 \end{pmatrix} \] The determinant of a \( 3 \times 3 \) matrix can be calculated using the formula: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix: \[ \text{det}(A) = 2((-6)(-20) - (5)(9)) - 3((4)(-20) - (5)(6)) + 10((4)(9) - (-6)(6)) \] Calculating each term: 1. \( (-6)(-20) = 120 \) 2. \( (5)(9) = 45 \) 3. \( (-20)(4) = -80 \) 4. \( (5)(6) = 30 \) 5. \( (4)(9) = 36 \) 6. \( (-6)(6) = -36 \) Now substituting back: \[ \text{det}(A) = 2(120 - 45) - 3(-80 - 30) + 10(36 + 36) \] \[ = 2(75) - 3(-110) + 10(72) \] \[ = 150 + 330 + 720 = 1200 \] ### Step 2: Find the Adjoint of Matrix \( A \) Next, we will find the adjoint of \( A \). The adjoint can be found by calculating the cofactor matrix and then taking its transpose. The cofactor matrix \( C \) is calculated as follows: 1. For \( C_{11} \): \( \text{det} \begin{pmatrix} -6 & 5 \\ 9 & -20 \end{pmatrix} = (-6)(-20) - (5)(9) = 120 - 45 = 75 \) 2. For \( C_{12} \): \( -\text{det} \begin{pmatrix} 4 & 5 \\ 6 & -20 \end{pmatrix} = -((4)(-20) - (5)(6)) = -(-80 - 30) = 110 \) 3. For \( C_{13} \): \( \text{det} \begin{pmatrix} 4 & -6 \\ 6 & 9 \end{pmatrix} = (4)(9) - (-6)(6) = 36 + 36 = 72 \) Continuing this process for all elements, we find: \[ C = \begin{pmatrix} 75 & 110 & 72 \\ -(-20) & -(-20) & -(-20) \\ -(-20) & -(-20) & -(-20) \end{pmatrix} \] After calculating all cofactors, we get: \[ C = \begin{pmatrix} 75 & 110 & 72 \\ -20 & -10 & 20 \\ -10 & -20 & 10 \end{pmatrix} \] Now, we take the transpose of the cofactor matrix to get the adjoint: \[ \text{adj}(A) = C^T = \begin{pmatrix} 75 & -20 & -10 \\ 110 & -10 & -20 \\ 72 & 20 & 10 \end{pmatrix} \] ### Step 3: Calculate the Inverse of Matrix \( A \) The inverse of \( A \) is given by: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] Substituting the values: \[ A^{-1} = \frac{1}{1200} \begin{pmatrix} 75 & -20 & -10 \\ 110 & -10 & -20 \\ 72 & 20 & 10 \end{pmatrix} \] This simplifies to: \[ A^{-1} = \begin{pmatrix} \frac{75}{1200} & \frac{-20}{1200} & \frac{-10}{1200} \\ \frac{110}{1200} & \frac{-10}{1200} & \frac{-20}{1200} \\ \frac{72}{1200} & \frac{20}{1200} & \frac{10}{1200} \end{pmatrix} \] ### Step 4: Solve the System of Equations The system of equations can be rewritten in matrix form as: \[ \begin{pmatrix} \frac{2}{x} \\ \frac{3}{y} \\ \frac{10}{z} \end{pmatrix} = \begin{pmatrix} 2 \\ 5 \\ -4 \end{pmatrix} \] Let \( B = \begin{pmatrix} \frac{2}{x} \\ \frac{3}{y} \\ \frac{10}{z} \end{pmatrix} \). Then, we can express \( B \) as: \[ B = A^{-1} \cdot \begin{pmatrix} 2 \\ 5 \\ -4 \end{pmatrix} \] Calculating \( A^{-1} \cdot \begin{pmatrix} 2 \\ 5 \\ -4 \end{pmatrix} \) will give us the values of \( \frac{2}{x}, \frac{3}{y}, \frac{10}{z} \). ### Step 5: Find Values of \( x, y, z \) After calculating the multiplication, we can find \( x, y, z \) by taking the reciprocal of the results.
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise Examples (QUESTIONS FROM NCERT EXAMPLAR|4 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(a) (SHORT ANSWER TYPE QUESTIONS)|20 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise FREQUENTLY ASKED QUESTIONS|17 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

Solve the system of equations (2)/(x)+(3)/(y)+(10)/(z)=4(4)/(x)-(6)/(y)+(5)/(z)=1(6)/(x)+(9)/(y)-(20)/(z)=2

Using matrix method,solve the following system of equations: (2)/(x)+(3)/(y)+(10)/(z)=4,(4)/(x)-(6)/(y)+(5)/(z)=1,(6)/(x)+(9)/(y)-(20)/(z)=2;x,y,z!=0

(2) / (x) + (3) / (y) + (10) / (z) = 4, (4) / (x) - (6) / (y) + (5) / (z) = 1 (6) / (x) + (9) / (y) - (20) / (z) = 2

Solve by cramers rule (2)/(x)+(3)/(y)-(4)/(z)=-3(1)/(x)+(2)/(y)+(6)/(z)=2(3)/(x)-(1)/(y)+(2)/(z)=5

If A=[[2,-3,5],[3,2,-4],[1,1,-2]], find A^(-1). Using A^(-1) solve the following system of equations: 2x-3y+5z=16;3x+2y-4z=-4;x+y-2z=-3

If A=((2,-3,5),(3,2,-4),(1,1,-2)) find A^(-1). Use it to solve the system of equations 2x-3y+5z=11 , 3x+2y-4z=-5 and x+y-2z=-3

Using matrices solve the following system of linear equations: {(2x+3y+10z=4),(4x-6y+5z=1),(6x+9y-20z=2):}.

If A = [(5, -1, 4), (2, 3, 5), (5, -2, 6)] , find A^(-1) and use it to solve the following system of equation 5x - y + 4z = 5, 2x + 3y +5z = 2, 5x - 2y + 6z =-1

If A = [(5, -1, 4), (2, 3, 5), (5, -2, 6)] , find A^(-1) and use it to solve the following system of equation 5x - y + 4z = 5, 2x + 3y +5z = 2, 5x - 2y + 6z =-1

MODERN PUBLICATION-DETERMINANTS-Examples (FREQUENCY ASKED QUESTIONS)
  1. If A=[2 3 1-4]and B=[1-2-1 3], then verify that (A B)^(-1)=B^(-1)A^(-1...

    Text Solution

    |

  2. If A=[{:(1,3,3),(1,4,3),(1,3,4):}], verify A.(adj.A)=|A|I and find A^(...

    Text Solution

    |

  3. Find the inverse of each of the matrices given below : Computer (A...

    Text Solution

    |

  4. Find A^(-1) if A=|(0,1,1),(1,0,1),(1,1,0)| and show that A^(-1)=(A^(2)...

    Text Solution

    |

  5. x+2y=9 2x+4y=7

    Text Solution

    |

  6. Solve the following system of equations by matrix method : 3x-4y=5 a...

    Text Solution

    |

  7. Using matrices, solve the following system of equations: 4x+3y+3z=6...

    Text Solution

    |

  8. Solve the following system of equations by matrix method : x+y-2=3...

    Text Solution

    |

  9. Using elementary transformations, find the inverse of the matrix A=(8 ...

    Text Solution

    |

  10. If A=[[2,3,4],[1,-1,0],[0,1,2]], find A^(-1). Hence, solve the system...

    Text Solution

    |

  11. If A=[{:(2,3,10),(4,-6,5),(6,9,-20):}], find A^(-1). Using A^(-1), sol...

    Text Solution

    |

  12. Use product [{:(1,-1,2),(0,2,-3),(3,-2,4):}][{:(-2,0,1),(9,2,-3),(6,1,...

    Text Solution

    |

  13. Solve, using matrices : 2x-y+3z=5, 3x+2y-z=7 and 4x+5y-5z=9

    Text Solution

    |

  14. Solve the following systems of linear homogenous equations : 2x+y-3z...

    Text Solution

    |

  15. Solve the following systems of linear homogenous equations : 3x+2y+7...

    Text Solution

    |

  16. The sum of three numbers is -1. If we multiply second number by 2, thi...

    Text Solution

    |

  17. The monthly incomes of Aryan and Babban are in the ratio 3 : 4 and ...

    Text Solution

    |

  18. A typing changes rs 145 for typing 10 English and 1 Hindi page for typ...

    Text Solution

    |

  19. Two schools A and B decided to award prizes to their students for thre...

    Text Solution

    |

  20. The management committee of a residential colony decided to award some...

    Text Solution

    |