Home
Class 12
MATHS
If A,B and C are the angles of a triangl...

If A,B and C are the angles of a triangle and
`|{:(1,1,1),(1+sinA,1+sinB,1+sinC),(sinA+sin^(2)A,sinB+sin^(2)B,sinCsin^(2)C):}|` =0
then prove that `Delta` ABC must be isoceles.

Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(a) (SHORT ANSWER TYPE QUESTIONS)|20 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(b) (SHORT ANSWER TYPE QUESTIONS)|11 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Examples (FREQUENCY ASKED QUESTIONS)|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

If A,B and C are the angles of a triangle and |{:(1,1,1),(1+sinA,1+sinB,1+sinC),(sinA+sin^(2)A,sinB+sin^(2)B,sinC+sin^(2)C):}| =0 then prove that Delta ABC must be isoceles.

If A, B and C are the angles of a triangle and |(1,1,1),(1 + sin A,1 + sin B,1 + sin C),(sin A + sin^(2) A,sin B + sin^(2)B,sin C + sin^(2) C)|= 0 , then the triangle ABC is

In a Delta ABC |[1,1,1],[1+sinA,1+sinB,1+sinC][sinA+sin^2A,sinB+sin^2B,sinC+sin^2C]|=0

In a /_ABC, if |[1,1,1,1][1+sin A,1+sin B,1+sin Csin A+sin^(2)A,sin B+sin^(2)B,sin C+sin^(2)C]|= ,then prove that /_ABC is an isosceles triangle.

If A ,B and C are the angles of an equilateral triangle, then the value of |{:(1,1,1),(1+sinA,1+sinB,1+sinC),(sinA+sin^2A,sinB+sin^2B,sinC+sin^2C):}| is ...........

If in a triangle ABC, |{:(1, sin A ,sin^(2)A),(1,sin B , sin^(2)B),(1, sin C, sin^(2)C):}|= 0 then the triangle is

det[[ In Delta ABC, if ,1,11+sin A,1+sin B,1+sin Csin A+sin^(2)B,sin B+sin^(2)C,sin C+sin^(2)A]]

If (sinA+sinB+sinC)^(2)=sin^(2)A+sin^(2)B+sin^(2)C , then which one is true?