Home
Class 12
MATHS
Show that if the determinant : Delta=|...

Show that if the determinant :
`Delta=|{:(3,-2,sin3theta),(-7,8,cos2theta),(-11,14,2):}|=theta`, then `sintheta=0` or `(1)/(2)`.

Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(a) (SHORT ANSWER TYPE QUESTIONS)|20 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(b) (SHORT ANSWER TYPE QUESTIONS)|11 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Examples (FREQUENCY ASKED QUESTIONS)|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

Prove that the determinant Delta =|{:(x,,sintheta,,cos theta),(-sin theta,,-x,,1),(cos theta,,1,,x):}| is independent of theta .

Find the value of theta satisfying |(1, 1,sin3theta), (-4, 3,cos2theta), (7,-7,-2)|=0.

If 2cos^(2)theta+11sin theta-7=0, then sin theta is -

The system has non trivial solution if |{:("sin"3theta,-1,1),("cos"2theta,4,3),(2,7,7):}| =0 then theta =

(sin3 theta+cos3 theta)/(cos theta-sin theta)=1+2xx sin2 theta

Find the value of theta if det[[1,1,sin3 theta-4,3,cos2 theta7,-7,-2]]=0