Home
Class 12
MATHS
Find the inverse of each of the followin...

Find the inverse of each of the following matrice :
`[{:(-1,5),(-3,2):}]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \( A = \begin{pmatrix} -1 & 5 \\ -3 & 2 \end{pmatrix} \), we will follow these steps: ### Step 1: Calculate the Determinant of Matrix A The determinant of a 2x2 matrix \( A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is given by the formula: \[ \text{det}(A) = ad - bc \] For our matrix \( A \): - \( a = -1 \) - \( b = 5 \) - \( c = -3 \) - \( d = 2 \) Calculating the determinant: \[ \text{det}(A) = (-1)(2) - (5)(-3) = -2 + 15 = 13 \] ### Step 2: Calculate the Adjoint of Matrix A The adjoint of a 2x2 matrix is given by: \[ \text{adj}(A) = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \] For our matrix \( A \): - \( d = 2 \) - \( -b = -5 \) - \( -c = 3 \) - \( a = -1 \) Thus, the adjoint of \( A \) is: \[ \text{adj}(A) = \begin{pmatrix} 2 & -5 \\ 3 & -1 \end{pmatrix} \] ### Step 3: Calculate the Inverse of Matrix A The inverse of matrix \( A \) is given by the formula: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] Substituting the values we calculated: \[ A^{-1} = \frac{1}{13} \cdot \begin{pmatrix} 2 & -5 \\ 3 & -1 \end{pmatrix} \] ### Step 4: Write the Final Result Thus, the inverse of matrix \( A \) is: \[ A^{-1} = \begin{pmatrix} \frac{2}{13} & \frac{-5}{13} \\ \frac{3}{13} & \frac{-1}{13} \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(g) (LONG ANSWER TYPE QUESTIONS)|15 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(h) (SHORT ANSWER TYPE QUESTIONS)|10 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(f) (LONG ANSWER TYPE QUESTIONS)|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

Find the inverse of each of the following matrice : [{:(2,-2),(4,3):}]

Find the inverse of each of the following matrices : {:((1,5,2),(0,-1,2),(0,0,1)):}

Find the inverse of each of the following : [{:(1,0,0),(3,3,0),(5,2,-1):}]

Find the inverse of each of the following : [{:(1,2,3),(0,2,4),(0,0,5):}]

Find the inverse of each of the following : [{:(2,1,3),(4,-1,0),(-7,2,1):}]

find the inverse of the following matrix : [{:(1,-1),(2,3):}]

Find the transpose of each of the following matrices : (i) [(5),(1/2),(-1)] (ii) [(1,-1),(2,3)] (iii) [(-1,5,6),(sqrt(3),5,6),(2,3,-1)] .

Find the inverse of each of the matrices given below : [(3,-5),(-1,2)]

Find the adjoint and inverse of each of the following matrices [[2,-1-4,3]]

MODERN PUBLICATION-DETERMINANTS-Exercise 4(g) (SHORT ANSWER TYPE QUESTIONS)
  1. Verify A(adj.A)=(adj.A)A=|A|I: [{:(2,3),(-4,-6):}]

    Text Solution

    |

  2. Verify A(adj.A)=(adj.A)A=|A|I: [{:(1,-1,2),(3,0,-2),(1,0,3):}]

    Text Solution

    |

  3. Verify that A(adjA)=I when : A=[{:(cos theta, -sintheta,0),(sintheta,...

    Text Solution

    |

  4. Find the inverse of each of the following matrice : [{:(-1,5),(-3,2)...

    Text Solution

    |

  5. Find the inverse of each of the following matrice : [{:(2,-2),(4,3):...

    Text Solution

    |

  6. If A=[{:(2,-1),(-1,2):}], verify A^(2)-4A+3I=0, where I=[{:(1,0),(0,1)...

    Text Solution

    |

  7. If A=[{:(3,1),(-1,2):}], show that A^(2)-5A+7I=O. Hence, find A^(-1).

    Text Solution

    |

  8. Consider the matrix A=[{:(2,3),(4,5):}]. Show that A^(2)-7A-2I=O

    Text Solution

    |

  9. Consider the matrix A=[{:(2,3),(4,5):}]. Hence , find A^(-1).

    Text Solution

    |

  10. If A=[{:(2,3),(5,-2):}], write A^(-1) in terms of A.

    Text Solution

    |

  11. Verify (AB)^(-1)=B^(-1)A^(-1) for the matrices A and B where A=[{:(2...

    Text Solution

    |

  12. Verify (AB)^(-1)=B^(-1)A^(-1) for the matrices A and B where A=[{:(3...

    Text Solution

    |

  13. Verify (AB)^(-1)=B^(-1)A^(-1) for the matrices A and B where A=[{:(3...

    Text Solution

    |

  14. Verify (AB)^(-1)=B^(-1)A^(-1) for the matrices A and B where A=[{:(4...

    Text Solution

    |

  15. Show that the matrix A=[{:(2,3),(1,2):}] satisfies the equation A^(2)-...

    Text Solution

    |

  16. If A=[{:(2,-1),(1,3):}] , then show that A^(2)-5A+7I(2)=O, hence find ...

    Text Solution

    |

  17. If A=[3 1-1 2] , show that A^2-5A+7I=O . Hence, find A^(-1) .

    Text Solution

    |

  18. For the matrix A=[{:(2,1),(3,0):}] , find the numbers 'a' and 'b' such...

    Text Solution

    |

  19. If A=[{:(2,-3),(-4,7):}], compute A^(-1) and show that 2A^(-1)+A-9I=O.

    Text Solution

    |