Home
Class 12
MATHS
Find the inverse of each of the followin...

Find the inverse of each of the following matrice :
`[{:(2,-2),(4,3):}]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \( A = \begin{pmatrix} 2 & -2 \\ 4 & 3 \end{pmatrix} \), we will follow these steps: ### Step 1: Calculate the Determinant of Matrix A The determinant of a 2x2 matrix \( A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is given by the formula: \[ \text{det}(A) = ad - bc \] For our matrix \( A \): - \( a = 2 \) - \( b = -2 \) - \( c = 4 \) - \( d = 3 \) So, the determinant is: \[ \text{det}(A) = (2)(3) - (-2)(4) = 6 + 8 = 14 \] ### Step 2: Calculate the Adjoint of Matrix A The adjoint of a 2x2 matrix is found by swapping the elements on the main diagonal and changing the signs of the off-diagonal elements. For our matrix \( A \): \[ \text{adj}(A) = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \begin{pmatrix} 3 & 2 \\ -4 & 2 \end{pmatrix} \] ### Step 3: Calculate the Inverse of Matrix A The inverse of matrix \( A \) is given by the formula: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] Substituting the values we calculated: \[ A^{-1} = \frac{1}{14} \begin{pmatrix} 3 & 2 \\ -4 & 2 \end{pmatrix} \] This results in: \[ A^{-1} = \begin{pmatrix} \frac{3}{14} & \frac{2}{14} \\ -\frac{4}{14} & \frac{2}{14} \end{pmatrix} = \begin{pmatrix} \frac{3}{14} & \frac{1}{7} \\ -\frac{2}{7} & \frac{1}{7} \end{pmatrix} \] ### Final Answer The inverse of the matrix \( A \) is: \[ A^{-1} = \begin{pmatrix} \frac{3}{14} & \frac{1}{7} \\ -\frac{2}{7} & \frac{1}{7} \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(g) (LONG ANSWER TYPE QUESTIONS)|15 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(h) (SHORT ANSWER TYPE QUESTIONS)|10 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(f) (LONG ANSWER TYPE QUESTIONS)|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

Find the inverse of each of the following matrice : [{:(-1,5),(-3,2):}]

Find the inverse of each of the following matrices : {:((1,5,2),(0,-1,2),(0,0,1)):}

Find the inverse of each of the following : [{:(1,2,3),(0,2,4),(0,0,5):}]

Find the adjoint of the following matrices : [{:(2,-1),(4,3):}]

Find the adjoint and inverse of each of the following matrices [[2,-1-4,3]]

Using elementary transformations, find the inverse of each of the matrices, [(1,-1),(2,3)]

Find the inverse of each of the following : [{:(2,1,3),(4,-1,0),(-7,2,1):}]

Find the inverse of each of the following : [{:(1,0,0),(3,3,0),(5,2,-1):}]

Find the inverse of each of the matrices given below : [(2,-3),(4,6)]

Using elementary transformations, find the inverse of each of the matrices, [(2,-3),(-1,2)]

MODERN PUBLICATION-DETERMINANTS-Exercise 4(g) (SHORT ANSWER TYPE QUESTIONS)
  1. Verify A(adj.A)=(adj.A)A=|A|I: [{:(2,3),(-4,-6):}]

    Text Solution

    |

  2. Verify A(adj.A)=(adj.A)A=|A|I: [{:(1,-1,2),(3,0,-2),(1,0,3):}]

    Text Solution

    |

  3. Verify that A(adjA)=I when : A=[{:(cos theta, -sintheta,0),(sintheta,...

    Text Solution

    |

  4. Find the inverse of each of the following matrice : [{:(-1,5),(-3,2)...

    Text Solution

    |

  5. Find the inverse of each of the following matrice : [{:(2,-2),(4,3):...

    Text Solution

    |

  6. If A=[{:(2,-1),(-1,2):}], verify A^(2)-4A+3I=0, where I=[{:(1,0),(0,1)...

    Text Solution

    |

  7. If A=[{:(3,1),(-1,2):}], show that A^(2)-5A+7I=O. Hence, find A^(-1).

    Text Solution

    |

  8. Consider the matrix A=[{:(2,3),(4,5):}]. Show that A^(2)-7A-2I=O

    Text Solution

    |

  9. Consider the matrix A=[{:(2,3),(4,5):}]. Hence , find A^(-1).

    Text Solution

    |

  10. If A=[{:(2,3),(5,-2):}], write A^(-1) in terms of A.

    Text Solution

    |

  11. Verify (AB)^(-1)=B^(-1)A^(-1) for the matrices A and B where A=[{:(2...

    Text Solution

    |

  12. Verify (AB)^(-1)=B^(-1)A^(-1) for the matrices A and B where A=[{:(3...

    Text Solution

    |

  13. Verify (AB)^(-1)=B^(-1)A^(-1) for the matrices A and B where A=[{:(3...

    Text Solution

    |

  14. Verify (AB)^(-1)=B^(-1)A^(-1) for the matrices A and B where A=[{:(4...

    Text Solution

    |

  15. Show that the matrix A=[{:(2,3),(1,2):}] satisfies the equation A^(2)-...

    Text Solution

    |

  16. If A=[{:(2,-1),(1,3):}] , then show that A^(2)-5A+7I(2)=O, hence find ...

    Text Solution

    |

  17. If A=[3 1-1 2] , show that A^2-5A+7I=O . Hence, find A^(-1) .

    Text Solution

    |

  18. For the matrix A=[{:(2,1),(3,0):}] , find the numbers 'a' and 'b' such...

    Text Solution

    |

  19. If A=[{:(2,-3),(-4,7):}], compute A^(-1) and show that 2A^(-1)+A-9I=O.

    Text Solution

    |