Home
Class 12
MATHS
If A=[{:(2,-1),(-1,2):}], verify A^(2)-4...

If `A=[{:(2,-1),(-1,2):}]`, verify `A^(2)-4A+3I=0`, where `I=[{:(1,0),(0,1):}]` and `O=[{:(0,0),(0,0):}]`. Hence find `A^(-1)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to verify the equation \( A^2 - 4A + 3I = 0 \) and find the inverse of matrix \( A \). Let's break this down step by step. ### Step 1: Define the matrices Given: \[ A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}, \quad I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] ### Step 2: Calculate \( A^2 \) To find \( A^2 \), we multiply \( A \) by itself: \[ A^2 = A \cdot A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \cdot \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \] Calculating the elements: - First row, first column: \( 2 \cdot 2 + (-1) \cdot (-1) = 4 + 1 = 5 \) - First row, second column: \( 2 \cdot (-1) + (-1) \cdot 2 = -2 - 2 = -4 \) - Second row, first column: \( -1 \cdot 2 + 2 \cdot (-1) = -2 - 2 = -4 \) - Second row, second column: \( -1 \cdot (-1) + 2 \cdot 2 = 1 + 4 = 5 \) Thus, \[ A^2 = \begin{pmatrix} 5 & -4 \\ -4 & 5 \end{pmatrix} \] ### Step 3: Calculate \( 4A \) Next, we calculate \( 4A \): \[ 4A = 4 \cdot \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} 8 & -4 \\ -4 & 8 \end{pmatrix} \] ### Step 4: Calculate \( 3I \) Now, we calculate \( 3I \): \[ 3I = 3 \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} \] ### Step 5: Substitute into the equation Now we substitute \( A^2 \), \( 4A \), and \( 3I \) into the equation \( A^2 - 4A + 3I \): \[ A^2 - 4A + 3I = \begin{pmatrix} 5 & -4 \\ -4 & 5 \end{pmatrix} - \begin{pmatrix} 8 & -4 \\ -4 & 8 \end{pmatrix} + \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} \] Calculating this step by step: 1. \( A^2 - 4A \): \[ \begin{pmatrix} 5 & -4 \\ -4 & 5 \end{pmatrix} - \begin{pmatrix} 8 & -4 \\ -4 & 8 \end{pmatrix} = \begin{pmatrix} 5 - 8 & -4 + 4 \\ -4 + 4 & 5 - 8 \end{pmatrix} = \begin{pmatrix} -3 & 0 \\ 0 & -3 \end{pmatrix} \] 2. Now add \( 3I \): \[ \begin{pmatrix} -3 & 0 \\ 0 & -3 \end{pmatrix} + \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} = \begin{pmatrix} -3 + 3 & 0 + 0 \\ 0 + 0 & -3 + 3 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \] Thus, we have verified that: \[ A^2 - 4A + 3I = 0 \] ### Step 6: Finding \( A^{-1} \) From the equation \( A^2 - 4A + 3I = 0 \), we can rearrange it to find \( A^{-1} \): \[ A^2 - 4A + 3I = 0 \implies A^2 = 4A - 3I \] Multiplying both sides by \( A^{-1} \): \[ A = 4I - 3A^{-1} \] Rearranging gives: \[ 3A^{-1} = 4I - A \] Thus, \[ A^{-1} = \frac{1}{3}(4I - A) \] Substituting \( A \) and \( I \): \[ A^{-1} = \frac{1}{3}\left(4 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}\right) = \frac{1}{3}\left(\begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix} - \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}\right) \] Calculating: \[ A^{-1} = \frac{1}{3}\begin{pmatrix} 4 - 2 & 0 + 1 \\ 0 + 1 & 4 - 2 \end{pmatrix} = \frac{1}{3}\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \] So, \[ A^{-1} = \begin{pmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} \end{pmatrix} \] ### Final Answer Thus, we have verified the equation and found: \[ A^{-1} = \begin{pmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(g) (LONG ANSWER TYPE QUESTIONS)|15 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(h) (SHORT ANSWER TYPE QUESTIONS)|10 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(f) (LONG ANSWER TYPE QUESTIONS)|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(1,0),(-1,7):}]" and "B=[{:(0,4),(-1,7):}] , find (3A^(2)-2B+I).

Let A={:[(1,2,3),(0,1,0)]:}andB={:[(-1,4,3),(1,0,0)]:} Find 2A +3B.

If A=|{:(1,0,0),(0,1,0),(0,0,1):}|" and A"=[{:(0,-3,4),(1,2,3),(0,5,5):}]," then find "(I-A)^(-1)

Find AB and BA if exists from the following matrices A and B: (i) A=[{:(2,3,-1),(0,1,2):}]and B=[{:(2,-6),(-4,0):}] (ii) A=[{:(1,2,3),(0,1,-2),(-1,0,-1):}]and B=[{:(0,0,2),(2,0,0),(0,2,0):}] (iii) A=[{:(0,3,4),(2,1,-2),(1,-3,-1):}]and B=[{:(2,1,3),(-1,0,-2):}]

If A = [ (0,1,1),(1,0,1),(1,1,0)] then A^(2) - 3I =

If A=[(3,-2),(4,-2)] and I=[(1,0),(0,1)] , find k so that A^(2)=kA-2I .

Let A=[{:(3,5," "4),(1,2,-3):}]" and "O=[{:(0,0,0),(0,0,0):}] , then verify that A+O=O+A=A.

If A=[(3,1),(-1,2)] and I=[(1,0),(0,1)] find 'k' so that A^(2)=5A+kI .

Verify that A^(2)=I , when A=[{:(0,1,-1),(4,-3,4),(3,-3,4):}]

If A={:[(3,2,7),(1,1,4),(-1,-1,0)]:},B={:[(1,0,3),(2,1,0),(0,-1,-3)]:}andC{:[(1,0,0),(0,1,0),(0,0,1)]:} , then find 2A+3B-7C.

MODERN PUBLICATION-DETERMINANTS-Exercise 4(g) (SHORT ANSWER TYPE QUESTIONS)
  1. Verify A(adj.A)=(adj.A)A=|A|I: [{:(2,3),(-4,-6):}]

    Text Solution

    |

  2. Verify A(adj.A)=(adj.A)A=|A|I: [{:(1,-1,2),(3,0,-2),(1,0,3):}]

    Text Solution

    |

  3. Verify that A(adjA)=I when : A=[{:(cos theta, -sintheta,0),(sintheta,...

    Text Solution

    |

  4. Find the inverse of each of the following matrice : [{:(-1,5),(-3,2)...

    Text Solution

    |

  5. Find the inverse of each of the following matrice : [{:(2,-2),(4,3):...

    Text Solution

    |

  6. If A=[{:(2,-1),(-1,2):}], verify A^(2)-4A+3I=0, where I=[{:(1,0),(0,1)...

    Text Solution

    |

  7. If A=[{:(3,1),(-1,2):}], show that A^(2)-5A+7I=O. Hence, find A^(-1).

    Text Solution

    |

  8. Consider the matrix A=[{:(2,3),(4,5):}]. Show that A^(2)-7A-2I=O

    Text Solution

    |

  9. Consider the matrix A=[{:(2,3),(4,5):}]. Hence , find A^(-1).

    Text Solution

    |

  10. If A=[{:(2,3),(5,-2):}], write A^(-1) in terms of A.

    Text Solution

    |

  11. Verify (AB)^(-1)=B^(-1)A^(-1) for the matrices A and B where A=[{:(2...

    Text Solution

    |

  12. Verify (AB)^(-1)=B^(-1)A^(-1) for the matrices A and B where A=[{:(3...

    Text Solution

    |

  13. Verify (AB)^(-1)=B^(-1)A^(-1) for the matrices A and B where A=[{:(3...

    Text Solution

    |

  14. Verify (AB)^(-1)=B^(-1)A^(-1) for the matrices A and B where A=[{:(4...

    Text Solution

    |

  15. Show that the matrix A=[{:(2,3),(1,2):}] satisfies the equation A^(2)-...

    Text Solution

    |

  16. If A=[{:(2,-1),(1,3):}] , then show that A^(2)-5A+7I(2)=O, hence find ...

    Text Solution

    |

  17. If A=[3 1-1 2] , show that A^2-5A+7I=O . Hence, find A^(-1) .

    Text Solution

    |

  18. For the matrix A=[{:(2,1),(3,0):}] , find the numbers 'a' and 'b' such...

    Text Solution

    |

  19. If A=[{:(2,-3),(-4,7):}], compute A^(-1) and show that 2A^(-1)+A-9I=O.

    Text Solution

    |