Home
Class 12
MATHS
If A=[{:(3,1),(-1,2):}], show that A^(2)...

If `A=[{:(3,1),(-1,2):}]`, show that `A^(2)-5A+7I=O`. Hence, find `A^(-1)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to show that \( A^2 - 5A + 7I = O \) for the matrix \( A = \begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix} \), and then find the inverse of \( A \). ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we multiply matrix \( A \) by itself: \[ A^2 = A \cdot A = \begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix} \cdot \begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix} \] Calculating the elements of the resulting matrix: - First row, first column: \[ 3 \cdot 3 + 1 \cdot (-1) = 9 - 1 = 8 \] - First row, second column: \[ 3 \cdot 1 + 1 \cdot 2 = 3 + 2 = 5 \] - Second row, first column: \[ -1 \cdot 3 + 2 \cdot (-1) = -3 - 2 = -5 \] - Second row, second column: \[ -1 \cdot 1 + 2 \cdot 2 = -1 + 4 = 3 \] Thus, \[ A^2 = \begin{pmatrix} 8 & 5 \\ -5 & 3 \end{pmatrix} \] ### Step 2: Calculate \( 5A \) Now, we calculate \( 5A \): \[ 5A = 5 \cdot \begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} 15 & 5 \\ -5 & 10 \end{pmatrix} \] ### Step 3: Calculate \( 7I \) The identity matrix \( I \) for a 2x2 matrix is: \[ I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] Thus, \[ 7I = 7 \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 7 & 0 \\ 0 & 7 \end{pmatrix} \] ### Step 4: Calculate \( A^2 - 5A + 7I \) Now we substitute \( A^2 \), \( 5A \), and \( 7I \) into the equation: \[ A^2 - 5A + 7I = \begin{pmatrix} 8 & 5 \\ -5 & 3 \end{pmatrix} - \begin{pmatrix} 15 & 5 \\ -5 & 10 \end{pmatrix} + \begin{pmatrix} 7 & 0 \\ 0 & 7 \end{pmatrix} \] Calculating each element: - First row, first column: \[ 8 - 15 + 7 = 0 \] - First row, second column: \[ 5 - 5 + 0 = 0 \] - Second row, first column: \[ -5 + 5 + 0 = 0 \] - Second row, second column: \[ 3 - 10 + 7 = 0 \] Thus, \[ A^2 - 5A + 7I = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = O \] ### Step 5: Find \( A^{-1} \) To find the inverse of \( A \), we use the formula for the inverse of a 2x2 matrix: \[ A^{-1} = \frac{1}{\text{det}(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \] Where \( A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \). For our matrix \( A \): - \( a = 3 \) - \( b = 1 \) - \( c = -1 \) - \( d = 2 \) Calculating the determinant \( \text{det}(A) \): \[ \text{det}(A) = ad - bc = (3)(2) - (1)(-1) = 6 + 1 = 7 \] Now substituting into the inverse formula: \[ A^{-1} = \frac{1}{7} \begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix} = \begin{pmatrix} \frac{2}{7} & -\frac{1}{7} \\ \frac{1}{7} & \frac{3}{7} \end{pmatrix} \] ### Final Result Thus, we have shown that: \[ A^2 - 5A + 7I = O \] And the inverse of \( A \) is: \[ A^{-1} = \begin{pmatrix} \frac{2}{7} & -\frac{1}{7} \\ \frac{1}{7} & \frac{3}{7} \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(g) (LONG ANSWER TYPE QUESTIONS)|15 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(h) (SHORT ANSWER TYPE QUESTIONS)|10 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(f) (LONG ANSWER TYPE QUESTIONS)|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

if A=[{:(3,1),(-1,2):}], show that A^(2)-5A+7I=0.

If A=[31-12], show that A^(2)-5A+7I=O. Hence,find A^(-1)

If A=[3112], show that A^(2)-5A+7I=0 Hence find A^(-1) .

If A=[{:(1,-1),(2,3):}] , shown that A^(2)-44+5I=o . Hence Find A^(-1) .

If A=[{:(2,-1),(1,3):}] , then show that A^(2)-5A+7I_(2)=O , hence find A^(-1) .

If A=[[3,1-1,2]], show that A^(2)-5A+7I=0

If A=[(5,3),(12,7)] , show that A^(2)-12A-I=0 . Hence find A^(-1) .

If A=[(2,-1,1),(-1,2,-1),(1,-1,2)] show that A^(2)-5A+4I=0 Hence find A^(-1)

If A=[{:(3,-5),(-1,2):}] then find A^(2)-5A- 4I .

If =[31-12], show that A^(2)-5A+7I_(2)=O

MODERN PUBLICATION-DETERMINANTS-Exercise 4(g) (SHORT ANSWER TYPE QUESTIONS)
  1. Verify A(adj.A)=(adj.A)A=|A|I: [{:(2,3),(-4,-6):}]

    Text Solution

    |

  2. Verify A(adj.A)=(adj.A)A=|A|I: [{:(1,-1,2),(3,0,-2),(1,0,3):}]

    Text Solution

    |

  3. Verify that A(adjA)=I when : A=[{:(cos theta, -sintheta,0),(sintheta,...

    Text Solution

    |

  4. Find the inverse of each of the following matrice : [{:(-1,5),(-3,2)...

    Text Solution

    |

  5. Find the inverse of each of the following matrice : [{:(2,-2),(4,3):...

    Text Solution

    |

  6. If A=[{:(2,-1),(-1,2):}], verify A^(2)-4A+3I=0, where I=[{:(1,0),(0,1)...

    Text Solution

    |

  7. If A=[{:(3,1),(-1,2):}], show that A^(2)-5A+7I=O. Hence, find A^(-1).

    Text Solution

    |

  8. Consider the matrix A=[{:(2,3),(4,5):}]. Show that A^(2)-7A-2I=O

    Text Solution

    |

  9. Consider the matrix A=[{:(2,3),(4,5):}]. Hence , find A^(-1).

    Text Solution

    |

  10. If A=[{:(2,3),(5,-2):}], write A^(-1) in terms of A.

    Text Solution

    |

  11. Verify (AB)^(-1)=B^(-1)A^(-1) for the matrices A and B where A=[{:(2...

    Text Solution

    |

  12. Verify (AB)^(-1)=B^(-1)A^(-1) for the matrices A and B where A=[{:(3...

    Text Solution

    |

  13. Verify (AB)^(-1)=B^(-1)A^(-1) for the matrices A and B where A=[{:(3...

    Text Solution

    |

  14. Verify (AB)^(-1)=B^(-1)A^(-1) for the matrices A and B where A=[{:(4...

    Text Solution

    |

  15. Show that the matrix A=[{:(2,3),(1,2):}] satisfies the equation A^(2)-...

    Text Solution

    |

  16. If A=[{:(2,-1),(1,3):}] , then show that A^(2)-5A+7I(2)=O, hence find ...

    Text Solution

    |

  17. If A=[3 1-1 2] , show that A^2-5A+7I=O . Hence, find A^(-1) .

    Text Solution

    |

  18. For the matrix A=[{:(2,1),(3,0):}] , find the numbers 'a' and 'b' such...

    Text Solution

    |

  19. If A=[{:(2,-3),(-4,7):}], compute A^(-1) and show that 2A^(-1)+A-9I=O.

    Text Solution

    |