Home
Class 12
MATHS
If A=[{:(2,3),(5,-2):}], write A^(-1) in...

If `A=[{:(2,3),(5,-2):}]`, write `A^(-1)` in terms of A.

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \( A = \begin{pmatrix} 2 & 3 \\ 5 & -2 \end{pmatrix} \) in terms of \( A \), we will follow these steps: ### Step 1: Calculate the Determinant of \( A \) The determinant of a \( 2 \times 2 \) matrix \( A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is calculated using the formula: \[ \text{det}(A) = ad - bc \] For our matrix \( A \): - \( a = 2 \) - \( b = 3 \) - \( c = 5 \) - \( d = -2 \) Calculating the determinant: \[ \text{det}(A) = (2)(-2) - (3)(5) = -4 - 15 = -19 \] ### Step 2: Calculate the Adjoint of \( A \) The adjoint of a \( 2 \times 2 \) matrix \( A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is given by: \[ \text{adj}(A) = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \] For our matrix \( A \): \[ \text{adj}(A) = \begin{pmatrix} -2 & -3 \\ -5 & 2 \end{pmatrix} \] ### Step 3: Calculate the Inverse of \( A \) The inverse of \( A \) is given by the formula: \[ A^{-1} = \frac{\text{adj}(A)}{\text{det}(A)} \] Substituting the values we found: \[ A^{-1} = \frac{1}{-19} \begin{pmatrix} -2 & -3 \\ -5 & 2 \end{pmatrix} \] This simplifies to: \[ A^{-1} = \begin{pmatrix} \frac{2}{19} & \frac{3}{19} \\ \frac{5}{19} & -\frac{2}{19} \end{pmatrix} \] ### Step 4: Express \( A^{-1} \) in terms of \( A \) Notice that we can factor out \( -\frac{1}{19} \) from the adjoint matrix: \[ A^{-1} = -\frac{1}{19} \begin{pmatrix} 2 & 3 \\ 5 & -2 \end{pmatrix} = -\frac{1}{19} A \] Thus, we can express \( A^{-1} \) in terms of \( A \): \[ A^{-1} = -\frac{1}{19} A \] ### Final Result \[ A^{-1} = -\frac{1}{19} A \] ---
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(g) (LONG ANSWER TYPE QUESTIONS)|15 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(h) (SHORT ANSWER TYPE QUESTIONS)|10 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(f) (LONG ANSWER TYPE QUESTIONS)|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

If A=[[2,35,-2]], write A^(-1) in terms of A

Write A^(-1) for A=[{:(2,5),(1,3):}] .

STATEMENT-1 : If 1^(2) - 2^(n) + 3^(2) …….."to" 21 terms is 231 STATEMENT-2 : If 1^(3) - 2^(3) + 3^(3) - 4^(5) ……….. to 15 terms is 1856 STATEMENT-3 : If 1^(1) + 3^(2) + 5^(2) …….. to 8 terms is 689

If the mappings f and g are given by : f={(1,2),(3,5),(4,1)} and g={(2,3),(5,1),(1,3)} , write fog.

Write first 4 terms of (1-(2y^2)/(5))^7

If |A|=3 and A^(-1)=[[3-1-(5)/(3)(2)/(3)]] then write the adj A

Find the term independent of x in (2x^2-1/x)^12 . Also write its 3^(rd) term.

If (r+1)^(th) term is (3.5...(2r-1))/(r!) (1/5)^(r) , then this is the term of binomial expansion-

In the expansion of (2x+3y)^5 , find the middle terms ((5+1)/2)^(th) term i.e. 3^(th) term and ((5+1)/2+1)^(th) term i.e. 4 th term.

MODERN PUBLICATION-DETERMINANTS-Exercise 4(g) (SHORT ANSWER TYPE QUESTIONS)
  1. Verify A(adj.A)=(adj.A)A=|A|I: [{:(2,3),(-4,-6):}]

    Text Solution

    |

  2. Verify A(adj.A)=(adj.A)A=|A|I: [{:(1,-1,2),(3,0,-2),(1,0,3):}]

    Text Solution

    |

  3. Verify that A(adjA)=I when : A=[{:(cos theta, -sintheta,0),(sintheta,...

    Text Solution

    |

  4. Find the inverse of each of the following matrice : [{:(-1,5),(-3,2)...

    Text Solution

    |

  5. Find the inverse of each of the following matrice : [{:(2,-2),(4,3):...

    Text Solution

    |

  6. If A=[{:(2,-1),(-1,2):}], verify A^(2)-4A+3I=0, where I=[{:(1,0),(0,1)...

    Text Solution

    |

  7. If A=[{:(3,1),(-1,2):}], show that A^(2)-5A+7I=O. Hence, find A^(-1).

    Text Solution

    |

  8. Consider the matrix A=[{:(2,3),(4,5):}]. Show that A^(2)-7A-2I=O

    Text Solution

    |

  9. Consider the matrix A=[{:(2,3),(4,5):}]. Hence , find A^(-1).

    Text Solution

    |

  10. If A=[{:(2,3),(5,-2):}], write A^(-1) in terms of A.

    Text Solution

    |

  11. Verify (AB)^(-1)=B^(-1)A^(-1) for the matrices A and B where A=[{:(2...

    Text Solution

    |

  12. Verify (AB)^(-1)=B^(-1)A^(-1) for the matrices A and B where A=[{:(3...

    Text Solution

    |

  13. Verify (AB)^(-1)=B^(-1)A^(-1) for the matrices A and B where A=[{:(3...

    Text Solution

    |

  14. Verify (AB)^(-1)=B^(-1)A^(-1) for the matrices A and B where A=[{:(4...

    Text Solution

    |

  15. Show that the matrix A=[{:(2,3),(1,2):}] satisfies the equation A^(2)-...

    Text Solution

    |

  16. If A=[{:(2,-1),(1,3):}] , then show that A^(2)-5A+7I(2)=O, hence find ...

    Text Solution

    |

  17. If A=[3 1-1 2] , show that A^2-5A+7I=O . Hence, find A^(-1) .

    Text Solution

    |

  18. For the matrix A=[{:(2,1),(3,0):}] , find the numbers 'a' and 'b' such...

    Text Solution

    |

  19. If A=[{:(2,-3),(-4,7):}], compute A^(-1) and show that 2A^(-1)+A-9I=O.

    Text Solution

    |