Home
Class 12
MATHS
Show that the matrix A=[{:(2,3),(1,2):}]...

Show that the matrix `A=[{:(2,3),(1,2):}]` satisfies the equation `A^(2)-4A+I=O` and hence, find `A^(-1)`.

Text Solution

Verified by Experts

The correct Answer is:
`[{:(2,-3),(-1,2):}]`
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(g) (LONG ANSWER TYPE QUESTIONS)|15 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(h) (SHORT ANSWER TYPE QUESTIONS)|10 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(f) (LONG ANSWER TYPE QUESTIONS)|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

Find the inverse of each of the matrices given below : Show that the matrix A=[(-8,5),(2,4)] satisfies the equation A^(2)+4A-42I=0 and hence find A^(-1) .

Show that the matrix A=[[2,31,2]] satisfies the equation A^(2)-4A+I=0

Show that the matrix A=[[2,31,2]] satisfies the equation A^(3)-4A^(2)+A=O

Show that the matrix A=[122212221] satisfies the equation A^(2)-4A-5I_(3)=O and hence find A^(-1) .

Show that A =[{:(5,3),(-1,-2):}] satisfies the equation A^(2)-3A-7I=0 and hence find the value of A^(-1)

show that matrix A = [(3,4),(1,2)] satisfies the equation A^2-5A+2I=0

If A[{:(2,3),(1,2):}] satisfy the equation A^2-kA+I=0 , then find k also A^(-1) .

Show that the matrix,A=[10-2-2-12341] satisfies the equation,A^(3)-A^(2)-3A-I_(3)=O. Hence, find A^(-1).

Show that thematrix A= [{:(,2,3),(,1,2):}] satisfies the equations A^(2)-4A+I=0 where I is 2 xx 2 identity matrix and O is 2 xx 2 zero matrix. Using the equations. Find A^(-1) .

A=[{:(1,3),(2,1):}] satisfy the equation A^2-kA-5I=0 , then find k and also A^(-1) .

MODERN PUBLICATION-DETERMINANTS-Exercise 4(g) (SHORT ANSWER TYPE QUESTIONS)
  1. Verify A(adj.A)=(adj.A)A=|A|I: [{:(2,3),(-4,-6):}]

    Text Solution

    |

  2. Verify A(adj.A)=(adj.A)A=|A|I: [{:(1,-1,2),(3,0,-2),(1,0,3):}]

    Text Solution

    |

  3. Verify that A(adjA)=I when : A=[{:(cos theta, -sintheta,0),(sintheta,...

    Text Solution

    |

  4. Find the inverse of each of the following matrice : [{:(-1,5),(-3,2)...

    Text Solution

    |

  5. Find the inverse of each of the following matrice : [{:(2,-2),(4,3):...

    Text Solution

    |

  6. If A=[{:(2,-1),(-1,2):}], verify A^(2)-4A+3I=0, where I=[{:(1,0),(0,1)...

    Text Solution

    |

  7. If A=[{:(3,1),(-1,2):}], show that A^(2)-5A+7I=O. Hence, find A^(-1).

    Text Solution

    |

  8. Consider the matrix A=[{:(2,3),(4,5):}]. Show that A^(2)-7A-2I=O

    Text Solution

    |

  9. Consider the matrix A=[{:(2,3),(4,5):}]. Hence , find A^(-1).

    Text Solution

    |

  10. If A=[{:(2,3),(5,-2):}], write A^(-1) in terms of A.

    Text Solution

    |

  11. Verify (AB)^(-1)=B^(-1)A^(-1) for the matrices A and B where A=[{:(2...

    Text Solution

    |

  12. Verify (AB)^(-1)=B^(-1)A^(-1) for the matrices A and B where A=[{:(3...

    Text Solution

    |

  13. Verify (AB)^(-1)=B^(-1)A^(-1) for the matrices A and B where A=[{:(3...

    Text Solution

    |

  14. Verify (AB)^(-1)=B^(-1)A^(-1) for the matrices A and B where A=[{:(4...

    Text Solution

    |

  15. Show that the matrix A=[{:(2,3),(1,2):}] satisfies the equation A^(2)-...

    Text Solution

    |

  16. If A=[{:(2,-1),(1,3):}] , then show that A^(2)-5A+7I(2)=O, hence find ...

    Text Solution

    |

  17. If A=[3 1-1 2] , show that A^2-5A+7I=O . Hence, find A^(-1) .

    Text Solution

    |

  18. For the matrix A=[{:(2,1),(3,0):}] , find the numbers 'a' and 'b' such...

    Text Solution

    |

  19. If A=[{:(2,-3),(-4,7):}], compute A^(-1) and show that 2A^(-1)+A-9I=O.

    Text Solution

    |