Home
Class 12
MATHS
If A=[{:(2,-1),(1,3):}] , then show that...

If `A=[{:(2,-1),(1,3):}]` , then show that `A^(2)-5A+7I_(2)=O`, hence find `A^(-1)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to show that \( A^2 - 5A + 7I = O \) and then find \( A^{-1} \). Given the matrix: \[ A = \begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix} \] ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we multiply \( A \) by itself: \[ A^2 = A \cdot A = \begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix} \cdot \begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix} \] Calculating the elements of \( A^2 \): - First row, first column: \( 2 \cdot 2 + (-1) \cdot 1 = 4 - 1 = 3 \) - First row, second column: \( 2 \cdot (-1) + (-1) \cdot 3 = -2 - 3 = -5 \) - Second row, first column: \( 1 \cdot 2 + 3 \cdot 1 = 2 + 3 = 5 \) - Second row, second column: \( 1 \cdot (-1) + 3 \cdot 3 = -1 + 9 = 8 \) Thus, we have: \[ A^2 = \begin{pmatrix} 3 & -5 \\ 5 & 8 \end{pmatrix} \] ### Step 2: Calculate \( 5A \) Next, we calculate \( 5A \): \[ 5A = 5 \cdot \begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix} = \begin{pmatrix} 10 & -5 \\ 5 & 15 \end{pmatrix} \] ### Step 3: Calculate \( 7I \) Now, we calculate \( 7I \) where \( I \) is the identity matrix: \[ I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \implies 7I = 7 \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 7 & 0 \\ 0 & 7 \end{pmatrix} \] ### Step 4: Calculate \( A^2 - 5A + 7I \) Now we substitute \( A^2 \), \( 5A \), and \( 7I \) into the equation: \[ A^2 - 5A + 7I = \begin{pmatrix} 3 & -5 \\ 5 & 8 \end{pmatrix} - \begin{pmatrix} 10 & -5 \\ 5 & 15 \end{pmatrix} + \begin{pmatrix} 7 & 0 \\ 0 & 7 \end{pmatrix} \] Calculating the matrix: - First row, first column: \( 3 - 10 + 7 = 0 \) - First row, second column: \( -5 - (-5) + 0 = 0 \) - Second row, first column: \( 5 - 5 + 0 = 0 \) - Second row, second column: \( 8 - 15 + 7 = 0 \) Thus, we have: \[ A^2 - 5A + 7I = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = O \] ### Step 5: Find \( A^{-1} \) To find \( A^{-1} \), we can use the formula: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] First, we calculate the determinant of \( A \): \[ \text{det}(A) = (2)(3) - (-1)(1) = 6 + 1 = 7 \] Next, we find the adjugate of \( A \): \[ \text{adj}(A) = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix} \] Now we can find \( A^{-1} \): \[ A^{-1} = \frac{1}{7} \begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} \frac{3}{7} & \frac{1}{7} \\ -\frac{1}{7} & \frac{2}{7} \end{pmatrix} \] ### Final Answer Thus, we have shown that \( A^2 - 5A + 7I = O \) and found: \[ A^{-1} = \begin{pmatrix} \frac{3}{7} & \frac{1}{7} \\ -\frac{1}{7} & \frac{2}{7} \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(g) (LONG ANSWER TYPE QUESTIONS)|15 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(h) (SHORT ANSWER TYPE QUESTIONS)|10 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(f) (LONG ANSWER TYPE QUESTIONS)|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

if A=[{:(3,1),(-1,2):}], show that A^(2)-5A+7I=0.

If A=[{:(3,1),(-1,2):}] , show that A^(2)-5A+7I=O . Hence, find A^(-1) .

If =[31-12], show that A^(2)-5A+7I_(2)=O

If A=[3112], show that A^(2)-5A+7I=0 Hence find A^(-1) .

If A=[31-12], show that A^(2)-5A+7I=O. Hence,find A^(-1)

Find the inverse of each of the matrices given below : If A=[(-1,-1),(2,-2)] " show that " A^(2)+3A+4I_(2)=O and " hence find "A^(-1) .

If A=[31-12], show that A^(2)-5A+7I_(2)=O

If A=|{:(1,2,2),(2,1,2),(2,2,1):}| , then show that A^(2)-4A-5I_(3)=0 . Hemce find A^(-1) .

Show that the matrix A=[{:(2,3),(1,2):}] satisfies the equation A^(2)-4A+I=O and hence, find A^(-1) .

If A=[{:(1,-1),(2,3):}] , shown that A^(2)-44+5I=o . Hence Find A^(-1) .

MODERN PUBLICATION-DETERMINANTS-Exercise 4(g) (SHORT ANSWER TYPE QUESTIONS)
  1. Verify A(adj.A)=(adj.A)A=|A|I: [{:(2,3),(-4,-6):}]

    Text Solution

    |

  2. Verify A(adj.A)=(adj.A)A=|A|I: [{:(1,-1,2),(3,0,-2),(1,0,3):}]

    Text Solution

    |

  3. Verify that A(adjA)=I when : A=[{:(cos theta, -sintheta,0),(sintheta,...

    Text Solution

    |

  4. Find the inverse of each of the following matrice : [{:(-1,5),(-3,2)...

    Text Solution

    |

  5. Find the inverse of each of the following matrice : [{:(2,-2),(4,3):...

    Text Solution

    |

  6. If A=[{:(2,-1),(-1,2):}], verify A^(2)-4A+3I=0, where I=[{:(1,0),(0,1)...

    Text Solution

    |

  7. If A=[{:(3,1),(-1,2):}], show that A^(2)-5A+7I=O. Hence, find A^(-1).

    Text Solution

    |

  8. Consider the matrix A=[{:(2,3),(4,5):}]. Show that A^(2)-7A-2I=O

    Text Solution

    |

  9. Consider the matrix A=[{:(2,3),(4,5):}]. Hence , find A^(-1).

    Text Solution

    |

  10. If A=[{:(2,3),(5,-2):}], write A^(-1) in terms of A.

    Text Solution

    |

  11. Verify (AB)^(-1)=B^(-1)A^(-1) for the matrices A and B where A=[{:(2...

    Text Solution

    |

  12. Verify (AB)^(-1)=B^(-1)A^(-1) for the matrices A and B where A=[{:(3...

    Text Solution

    |

  13. Verify (AB)^(-1)=B^(-1)A^(-1) for the matrices A and B where A=[{:(3...

    Text Solution

    |

  14. Verify (AB)^(-1)=B^(-1)A^(-1) for the matrices A and B where A=[{:(4...

    Text Solution

    |

  15. Show that the matrix A=[{:(2,3),(1,2):}] satisfies the equation A^(2)-...

    Text Solution

    |

  16. If A=[{:(2,-1),(1,3):}] , then show that A^(2)-5A+7I(2)=O, hence find ...

    Text Solution

    |

  17. If A=[3 1-1 2] , show that A^2-5A+7I=O . Hence, find A^(-1) .

    Text Solution

    |

  18. For the matrix A=[{:(2,1),(3,0):}] , find the numbers 'a' and 'b' such...

    Text Solution

    |

  19. If A=[{:(2,-3),(-4,7):}], compute A^(-1) and show that 2A^(-1)+A-9I=O.

    Text Solution

    |