Home
Class 12
MATHS
If A=[{:(1,2),(4,2):}], then the value o...

If `A=[{:(1,2),(4,2):}]`, then the value of `k=`_________if `|2A|=k|A|`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( k \) such that \( |2A| = k|A| \) for the matrix \( A = \begin{pmatrix} 1 & 2 \\ 4 & 2 \end{pmatrix} \). ### Step 1: Calculate the determinant of matrix \( A \) The determinant of a 2x2 matrix \( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is calculated using the formula: \[ |A| = ad - bc \] For our matrix \( A \): \[ |A| = (1)(2) - (2)(4) = 2 - 8 = -6 \] ### Step 2: Calculate the matrix \( 2A \) To find \( 2A \), we multiply each element of matrix \( A \) by 2: \[ 2A = 2 \cdot \begin{pmatrix} 1 & 2 \\ 4 & 2 \end{pmatrix} = \begin{pmatrix} 2 & 4 \\ 8 & 4 \end{pmatrix} \] ### Step 3: Calculate the determinant of matrix \( 2A \) Now, we calculate the determinant of \( 2A \): \[ |2A| = (2)(4) - (4)(8) = 8 - 32 = -24 \] ### Step 4: Set up the equation \( |2A| = k|A| \) According to the problem, we have: \[ |2A| = k |A| \] Substituting the values we calculated: \[ -24 = k(-6) \] ### Step 5: Solve for \( k \) To find \( k \), we rearrange the equation: \[ k = \frac{-24}{-6} = 4 \] ### Conclusion Thus, the value of \( k \) is: \[ \boxed{4} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (True or False)|5 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (Very short answer type question)|26 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (Multiple choice question)|25 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

If A=[[2,4-1,k]] and A^(2)=0, then find the value of k.

If 2^(k)-2^(k-1)=8 then the value of k^3 is:

If A=[[1,2],[2,1]] and A(adjA)=k , then the value of k is

If A = [{:(2, " "4), (k, -2):}] " and " A^(2) = O , find the value of k.

8k+4,6k-2,2k+7 are in AP then the value of K is

If k-1,k+1 and 2k+3 are in AP , then the value of k is

If A=[(2, 3),(5,-2)] be such that A^(-1)=k\ A , then find the value of k .

If |[1,2,K],[K,4,5],[5,6,7]|=0 ,then the possible values of K are

If   ( k-2 ) /( k + 3 ) = 4/9 , then find the value of k