Home
Class 12
MATHS
The value of [{:(102,18,36),(1,3,4),(17,...

The value of `[{:(102,18,36),(1,3,4),(17,3,6):}]` is _____________

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the determinant of the matrix \[ A = \begin{pmatrix} 102 & 18 & 36 \\ 1 & 3 & 4 \\ 17 & 3 & 6 \end{pmatrix} \] we will follow these steps: ### Step 1: Write the Determinant We need to calculate the determinant of the matrix \( A \): \[ \text{det}(A) = \begin{vmatrix} 102 & 18 & 36 \\ 1 & 3 & 4 \\ 17 & 3 & 6 \end{vmatrix} \] ### Step 2: Factor Out Common Elements Notice that the first row can be factored. We can express the elements of the first row in terms of 6: - \( 102 = 6 \times 17 \) - \( 18 = 6 \times 3 \) - \( 36 = 6 \times 6 \) Thus, we can factor out 6 from the first row: \[ \text{det}(A) = 6 \cdot \begin{vmatrix} 17 & 3 & 6 \\ 1 & 3 & 4 \\ 17 & 3 & 6 \end{vmatrix} \] ### Step 3: Identify Duplicate Rows Now, observe that the first row and the third row of the new determinant are identical: \[ \begin{pmatrix} 17 & 3 & 6 \\ 1 & 3 & 4 \\ 17 & 3 & 6 \end{pmatrix} \] ### Step 4: Apply the Property of Determinants According to the properties of determinants, if two rows (or columns) of a determinant are identical, the value of the determinant is 0. Therefore: \[ \begin{vmatrix} 17 & 3 & 6 \\ 1 & 3 & 4 \\ 17 & 3 & 6 \end{vmatrix} = 0 \] ### Step 5: Calculate the Final Value Now substituting back into our expression for the determinant: \[ \text{det}(A) = 6 \cdot 0 = 0 \] ### Conclusion Thus, the value of the determinant of the matrix \( A \) is: \[ \text{Value} = 0 \] ---
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (True or False)|5 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (Very short answer type question)|26 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (Multiple choice question)|25 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

Use properties of determinants to evaluate : |{:(102,18,36),(1,3,4),(17,3,6):}|

Find the value of : -6-3-(-18)

Find the value of 10^-3,6^-5,3^3

Find the value of : -17+36-18-1

The mean of 1^3. 2^3,3^3,4^3,5^3,6^3,7^3 is

Compute the value of 1/(log_(2)36)+ 1/(log_(3)36) .

Find the HCF of (36)/(51) and 3(9)/(17)

Write the value of the following determinant: |[102, 18, 36],[ 1, 3, 4],[17, 3, 6]|

The value of 2tan18^(@)+3sec18^(@)-4cos18^(@) is