Home
Class 12
MATHS
If Delta=|{:(1,2,3),(2,0,1),(5,3,8):}|, ...

If `Delta=|{:(1,2,3),(2,0,1),(5,3,8):}|`, then minor of `a_(22)`=__________

Text Solution

AI Generated Solution

The correct Answer is:
To find the minor of the element \( a_{22} \) in the determinant \( \Delta = \begin{vmatrix} 1 & 2 & 3 \\ 2 & 0 & 1 \\ 5 & 3 & 8 \end{vmatrix} \), we follow these steps: ### Step 1: Identify the element \( a_{22} \) The element \( a_{22} \) is located in the second row and second column of the matrix. From the given matrix, we have: \[ a_{22} = 0 \] ### Step 2: Form the submatrix for the minor To find the minor of \( a_{22} \), we need to remove the second row and the second column from the matrix. The remaining elements are: \[ \begin{vmatrix} 1 & 3 \\ 5 & 8 \end{vmatrix} \] ### Step 3: Calculate the determinant of the submatrix Now, we calculate the determinant of the submatrix: \[ \text{Determinant} = (1 \cdot 8) - (3 \cdot 5) \] Calculating this gives: \[ = 8 - 15 = -7 \] ### Step 4: Conclusion Thus, the minor of \( a_{22} \) is: \[ \text{Minor of } a_{22} = -7 \] ### Final Answer The minor of \( a_{22} \) is \(-7\). ---
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (True or False)|5 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (Very short answer type question)|26 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (Multiple choice question)|25 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

If Delta=|{:(5,3,8),(2,0,1),(1,2,3):}| , write : (i) the minor of the element a_(23) (ii) the co-factor of the element a_(32) .

If Delta=det[[5,3,82,0,11,2,3]], write the minor of the

If Delta = |(5,3,8),(6,0,4),(1,2,3)| then the minor of the element a_(21) is

If A=[{:(1,2,3), (0,4,2),(0,0,6):}] , then the minor of the element a_(31) is

If A=[(1,-1,3),(3,2,1),(4,5,6)] then cofactor of A_(22) is

Delta=|[5,3,8],[2,0,1],[1,2,3]|=

Let Delta=|{:(3,-1,-2),(4,5,6),(2,-3,1):}| Find minor and cofactor of elements of Delta .

Delta=|(5,3,8),(2,0,1),(1,2,3)| , find the value of 5a_(31)+3a_(32)+8a_(33) .

If Delta = |{:(1,2,3),(2,3,5),(3,6,12):}|and Delta' = |{:(4,8,15),(3,6,12),(2,3,5):}| , then

Solve: Delta=|[5,3,8],[2,0,1],[1,2,3]|=