Home
Class 12
MATHS
Evaluate : |{:(costheta,-sintheta),(sint...

Evaluate : `|{:(costheta,-sintheta),(sintheta,costheta):}|`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the determinant \( D = \begin{vmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{vmatrix} \), we will follow the steps below: ### Step 1: Write the determinant We start with the determinant: \[ D = \begin{vmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{vmatrix} \] ### Step 2: Apply the formula for a 2x2 determinant For a 2x2 matrix \( \begin{vmatrix} a & b \\ c & d \end{vmatrix} \), the determinant is calculated as: \[ D = ad - bc \] In our case: - \( a = \cos \theta \) - \( b = -\sin \theta \) - \( c = \sin \theta \) - \( d = \cos \theta \) ### Step 3: Substitute the values into the determinant formula Now substituting the values into the formula: \[ D = (\cos \theta)(\cos \theta) - (-\sin \theta)(\sin \theta) \] ### Step 4: Simplify the expression This simplifies to: \[ D = \cos^2 \theta + \sin^2 \theta \] ### Step 5: Use the Pythagorean identity We know from the Pythagorean identity that: \[ \cos^2 \theta + \sin^2 \theta = 1 \] ### Step 6: Conclude the evaluation Thus, we find that: \[ D = 1 \] ### Final Answer The value of the determinant is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise NCERT FILE (Exercise 4.1)|13 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise NCERT FILE (Exercise 4.2)|19 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (True or False)|5 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

Choose the correct answer from the following : The value of |{:(-costheta,sintheta),(-sintheta,-costheta):}| is:

Evaluate the determinants in |{:(costheta,-sintheta),(sintheta,costheta):}|

Show that every real orthogonal matrix is of any one of the forms {:[(costheta,-sintheta),(sintheta,costheta)]:}or{:[(costheta,sintheta),(sintheta,-costheta)]:}

If A = ((costheta,-sintheta),(sintheta,costheta)) then

Show that costheta.[{:(costheta,sintheta),(-sintheta,costheta):}]+sintheta.[{:(sintheta,-costheta),(costheta,sintheta):}]=I.

Let A={:[(costheta,-sintheta),(-sintheta,-costheta)]:} then inverse of A is

costheta[{:(costheta,-sin theta),(sintheta,costheta):}]+sintheta[{:(sintheta,costheta),(-costheta,sintheta):}]=?

Simplify: cos theta[{:(costheta,sintheta),(-sintheta,costheta):}]+sintheta[{:(sin theta ,-costheta),(costheta, sintheta):}]

if A= [{:(costheta,sintheta),(-sintheta,costheta):}], then A A^T =?

Let A=[{:(costheta,sintheta),(-sintheta,costheta):}] , then |2A| is equal to

MODERN PUBLICATION-DETERMINANTS-OBJECTIVE TYPE QUESTIONS (Very short answer type question)
  1. |["cos"70^(@), "sin"20^(@)], ["sin"70^(@), "cos"20^(@)]|=?

    Text Solution

    |

  2. Evaluate |["cos" 15^(@), "sin"15^(@)],["sin" 75^(@), "cos"75^(@)]|

    Text Solution

    |

  3. Evaluate : |{:(costheta,-sintheta),(sintheta,costheta):}|

    Text Solution

    |

  4. Evaluate : |{:(x,x+1),(x-1,x):}|

    Text Solution

    |

  5. |(x^(2)-x+1, x-1),(x+1,x+1)|

    Text Solution

    |

  6. If A is a3x3 matrix, |A| != 0 and |3A|=k|A| , then write the value of ...

    Text Solution

    |

  7. Let A be a square matric of order 3\ xx\ 3 . Write the value of 2A ...

    Text Solution

    |

  8. If A and B are square matrices of same order 3 , such that |A|=2 and A...

    Text Solution

    |

  9. Find the co-factor of the element a(23) of the determinant |{:(5,3,5),...

    Text Solution

    |

  10. Write the minor of 6 in |{:(1,2,3),(4,5,6),(7,8,9):}|

    Text Solution

    |

  11. Write the co-factor of 7 in |{:(4,5,6),(5,6,7),(13,15,17):}|

    Text Solution

    |

  12. For what value of x , is the following matrix singular ? [(3-2x,x+1)...

    Text Solution

    |

  13. For what value of x , the matrix [5-xx+1 2 4] is singular?

    Text Solution

    |

  14. For what value of 'x' the matrix [{:(2-x,3),(-5,-1):}] is not invertib...

    Text Solution

    |

  15. Find the adjoint of the following matrices : [{:(2,-1),(4,3):}]

    Text Solution

    |

  16. Find the adjoint of each of the matrices in questions 1 and 2. [{:(1...

    Text Solution

    |

  17. Find the adjoint of the following matrices : [{:(2,3),(1,4):}]

    Text Solution

    |

  18. If A=[{:(3,1),(2,-3):}], then find |adj.A|.

    Text Solution

    |

  19. If A=[(costheta,-sintheta),(sintheta,costheta)] " then " A^(-1) =?

    Text Solution

    |

  20. If A is a square matrix of order 3 with |A|=9, then write the value of...

    Text Solution

    |