Home
Class 12
MATHS
Find the adjoint of the following matric...

Find the adjoint of the following matrices :
`[{:(2,-1),(4,3):}]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the adjoint of the given matrix \( A = \begin{pmatrix} 2 & -1 \\ 4 & 3 \end{pmatrix} \), we will follow these steps: ### Step 1: Find the Minors The minors are calculated by removing the row and column of each element and finding the determinant of the remaining matrix. 1. **Minor \( M_{11} \)** (for element \( a_{11} = 2 \)): \[ M_{11} = \text{det} \begin{pmatrix} 3 \end{pmatrix} = 3 \] 2. **Minor \( M_{12} \)** (for element \( a_{12} = -1 \)): \[ M_{12} = \text{det} \begin{pmatrix} 4 \end{pmatrix} = 4 \] 3. **Minor \( M_{21} \)** (for element \( a_{21} = 4 \)): \[ M_{21} = \text{det} \begin{pmatrix} -1 \end{pmatrix} = -1 \] 4. **Minor \( M_{22} \)** (for element \( a_{22} = 3 \)): \[ M_{22} = \text{det} \begin{pmatrix} 2 \end{pmatrix} = 2 \] ### Step 2: Find the Cofactors The cofactors are calculated using the formula: \[ C_{ij} = (-1)^{i+j} M_{ij} \] 1. **Cofactor \( C_{11} \)**: \[ C_{11} = (-1)^{1+1} M_{11} = 1 \cdot 3 = 3 \] 2. **Cofactor \( C_{12} \)**: \[ C_{12} = (-1)^{1+2} M_{12} = -1 \cdot 4 = -4 \] 3. **Cofactor \( C_{21} \)**: \[ C_{21} = (-1)^{2+1} M_{21} = -1 \cdot (-1) = 1 \] 4. **Cofactor \( C_{22} \)**: \[ C_{22} = (-1)^{2+2} M_{22} = 1 \cdot 2 = 2 \] ### Step 3: Form the Cofactor Matrix The cofactor matrix is: \[ C = \begin{pmatrix} 3 & -4 \\ 1 & 2 \end{pmatrix} \] ### Step 4: Transpose the Cofactor Matrix The adjoint of matrix \( A \) is the transpose of the cofactor matrix: \[ \text{adj}(A) = C^T = \begin{pmatrix} 3 & 1 \\ -4 & 2 \end{pmatrix} \] ### Final Answer Thus, the adjoint of the matrix \( A \) is: \[ \text{adj}(A) = \begin{pmatrix} 3 & 1 \\ -4 & 2 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise NCERT FILE (Exercise 4.1)|13 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise NCERT FILE (Exercise 4.2)|19 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (True or False)|5 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

Find the adjoint of the following matrices : [{:(2,3),(1,4):}]

Find the adjoints of the following matrices : (1) {:((1,3),(-2,4)):}" "(2) {:((5,6),(3,4)):} .

Find the adjoint of the following matrix: A=[[2,-33,5]]

Write the adjoint of the following matrix: [[2,-14,3]]

Find the inverse of each of the following matrice : [{:(2,-2),(4,3):}]

Find the adjoint of the following matrices: [-3524]( ii) [abcd] Verify that (adjA)A=|A|I=A(adjA) for the above matrices.

Find the inverse of each of the following matrice : [{:(-1,5),(-3,2):}]

Find the adjoint of each of the matrices [{:(1,2),(3,4):}]

Find the inverse of the following matrices: [[1,2,32,3,22,3,4]]

Find the adjoint of each of the matrices [{:(1,-1,2),(2,3,5),(-2,0,1):}]

MODERN PUBLICATION-DETERMINANTS-OBJECTIVE TYPE QUESTIONS (Very short answer type question)
  1. |(x^(2)-x+1, x-1),(x+1,x+1)|

    Text Solution

    |

  2. If A is a3x3 matrix, |A| != 0 and |3A|=k|A| , then write the value of ...

    Text Solution

    |

  3. Let A be a square matric of order 3\ xx\ 3 . Write the value of 2A ...

    Text Solution

    |

  4. If A and B are square matrices of same order 3 , such that |A|=2 and A...

    Text Solution

    |

  5. Find the co-factor of the element a(23) of the determinant |{:(5,3,5),...

    Text Solution

    |

  6. Write the minor of 6 in |{:(1,2,3),(4,5,6),(7,8,9):}|

    Text Solution

    |

  7. Write the co-factor of 7 in |{:(4,5,6),(5,6,7),(13,15,17):}|

    Text Solution

    |

  8. For what value of x , is the following matrix singular ? [(3-2x,x+1)...

    Text Solution

    |

  9. For what value of x , the matrix [5-xx+1 2 4] is singular?

    Text Solution

    |

  10. For what value of 'x' the matrix [{:(2-x,3),(-5,-1):}] is not invertib...

    Text Solution

    |

  11. Find the adjoint of the following matrices : [{:(2,-1),(4,3):}]

    Text Solution

    |

  12. Find the adjoint of each of the matrices in questions 1 and 2. [{:(1...

    Text Solution

    |

  13. Find the adjoint of the following matrices : [{:(2,3),(1,4):}]

    Text Solution

    |

  14. If A=[{:(3,1),(2,-3):}], then find |adj.A|.

    Text Solution

    |

  15. If A=[(costheta,-sintheta),(sintheta,costheta)] " then " A^(-1) =?

    Text Solution

    |

  16. If A is a square matrix of order 3 with |A|=9, then write the value of...

    Text Solution

    |

  17. If A is a square matrix with |A|=8, then find the value of |A A'|.

    Text Solution

    |

  18. If A is a 3 × 3 invertible matrix, then what will be the value of k if...

    Text Solution

    |

  19. Write A^(-1) for A=[{:(2,5),(1,3):}].

    Text Solution

    |

  20. if for any 2xx2 square matrix A , A(adjA)=[[8 , 0] , [0 , 8]] then wri...

    Text Solution

    |