Home
Class 12
MATHS
If A=[{:(3,1),(2,-3):}], then find |adj....

If `A=[{:(3,1),(2,-3):}]`, then find `|adj.A|`.

Text Solution

AI Generated Solution

The correct Answer is:
To find \(|\text{adj} A|\) for the matrix \(A = \begin{pmatrix} 3 & 1 \\ 2 & -3 \end{pmatrix}\), we will follow these steps: ### Step 1: Find the Determinant of Matrix \(A\) The determinant of a \(2 \times 2\) matrix \(A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}\) is calculated using the formula: \[ |A| = ad - bc \] For our matrix \(A\): - \(a = 3\) - \(b = 1\) - \(c = 2\) - \(d = -3\) Now, substituting these values into the determinant formula: \[ |A| = (3)(-3) - (1)(2) = -9 - 2 = -11 \] ### Step 2: Find the Adjoint of Matrix \(A\) The adjoint of a \(2 \times 2\) matrix is given by: \[ \text{adj} A = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \] Substituting the values from matrix \(A\): \[ \text{adj} A = \begin{pmatrix} -3 & -1 \\ -2 & 3 \end{pmatrix} \] ### Step 3: Find the Determinant of the Adjoint of Matrix \(A\) The determinant of the adjoint of a \(2 \times 2\) matrix can be calculated using the same formula: \[ |\text{adj} A| = |d \cdot a - (-b)(-c)| \] Substituting the values from the adjoint matrix: - \(d = -3\) - \(a = 3\) - \(b = -1\) - \(c = -2\) Now, calculating the determinant: \[ |\text{adj} A| = (-3)(3) - (-1)(-2) = -9 - 2 = -11 \] ### Step 4: Use the Property of Determinants There is a property of determinants that states: \[ |\text{adj} A| = |A|^{n-1} \] where \(n\) is the order of the matrix. For a \(2 \times 2\) matrix, \(n = 2\): \[ |\text{adj} A| = |A|^{2-1} = |A|^1 = |A| \] Thus, we have: \[ |\text{adj} A| = -11 \] ### Final Answer \[ |\text{adj} A| = -11 \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise NCERT FILE (Exercise 4.1)|13 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise NCERT FILE (Exercise 4.2)|19 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (True or False)|5 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(2,5),(1,3):}] , find adj A .

If A=[{:(1,2,3),(2,3,2),(3,3,4):}] , find adj.A

If A[(-1,5),(-3,2)] , then adj A=

If A={:[(1,2),(3,4)]:}," then: " adj(adjA)=

If A={:[(4,2),(5,3)]:}" then :"|adj(adjA)|=

If A=[{:(3,-3,4),(2,-3,4),(0,-1,1):}] , then the trace of the matrix Adj(AdjA) is

If A = [(1,1,1),(1,2,-3),(2,-1,3)] then | adj A| =

If A=[(3,2,-1),(4,-1,2),(0,1,2)] then adj (adjA) is

If A=[(4,5),(3,1)] then |adjA| is

MODERN PUBLICATION-DETERMINANTS-OBJECTIVE TYPE QUESTIONS (Very short answer type question)
  1. |(x^(2)-x+1, x-1),(x+1,x+1)|

    Text Solution

    |

  2. If A is a3x3 matrix, |A| != 0 and |3A|=k|A| , then write the value of ...

    Text Solution

    |

  3. Let A be a square matric of order 3\ xx\ 3 . Write the value of 2A ...

    Text Solution

    |

  4. If A and B are square matrices of same order 3 , such that |A|=2 and A...

    Text Solution

    |

  5. Find the co-factor of the element a(23) of the determinant |{:(5,3,5),...

    Text Solution

    |

  6. Write the minor of 6 in |{:(1,2,3),(4,5,6),(7,8,9):}|

    Text Solution

    |

  7. Write the co-factor of 7 in |{:(4,5,6),(5,6,7),(13,15,17):}|

    Text Solution

    |

  8. For what value of x , is the following matrix singular ? [(3-2x,x+1)...

    Text Solution

    |

  9. For what value of x , the matrix [5-xx+1 2 4] is singular?

    Text Solution

    |

  10. For what value of 'x' the matrix [{:(2-x,3),(-5,-1):}] is not invertib...

    Text Solution

    |

  11. Find the adjoint of the following matrices : [{:(2,-1),(4,3):}]

    Text Solution

    |

  12. Find the adjoint of each of the matrices in questions 1 and 2. [{:(1...

    Text Solution

    |

  13. Find the adjoint of the following matrices : [{:(2,3),(1,4):}]

    Text Solution

    |

  14. If A=[{:(3,1),(2,-3):}], then find |adj.A|.

    Text Solution

    |

  15. If A=[(costheta,-sintheta),(sintheta,costheta)] " then " A^(-1) =?

    Text Solution

    |

  16. If A is a square matrix of order 3 with |A|=9, then write the value of...

    Text Solution

    |

  17. If A is a square matrix with |A|=8, then find the value of |A A'|.

    Text Solution

    |

  18. If A is a 3 × 3 invertible matrix, then what will be the value of k if...

    Text Solution

    |

  19. Write A^(-1) for A=[{:(2,5),(1,3):}].

    Text Solution

    |

  20. if for any 2xx2 square matrix A , A(adjA)=[[8 , 0] , [0 , 8]] then wri...

    Text Solution

    |