Home
Class 12
MATHS
Show that |1 1+p1+p+q2 3+2p1+3p+2q3 6+3p...

Show that `|1 1+p1+p+q2 3+2p1+3p+2q3 6+3p 106 p+3q|=1.`

Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise|4 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Revision Exercise|32 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise NCERT FILE (Exercise 4.6)|16 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

Show that: |11+p1+p+q23+2p1+3p+2q36+3p1+6p+3q|=1

Show that det[[1,1+p,1+p+q2,3+2p,1+3p+2q3,6+3p,1+6p+3q]]=

Using properties of determinants,prove the det[[1+p,1+p+q2,3+2p,1+3p+2q3,6+3p,1+6p+3q]]=1

Using properties of determinants.Prove that det[[2,3+2p,1+3p+2q3,6+3p,10+6p+3q]]=1

For any natural number p and q (i) p # q = p 3 + q 3 + 3 and p ∗ q = p 2 + q 2 + 2 and p $ q = | p − q | (ii) Max (p,q) = Maximum of (p,q) and Min (p and q) = Minimum of (p,q)The value of [(1 $ 2) # (3$ 4)]*[(5 $ 6) # (7 $ 8)] is :

If the lines p_1x+q_1y=1,p_2x+q_2y=1a n dp_3x+q_3y=1, be concurrent, show that the point (p_1, q_1),(p_2, q_2)a n d(p_3, q_3) are collinear.

If the lines p_1 x + q_1 y = 1, p_2 x + q_2 y=1 and p_3 x + q_3 y = 1 be concurrent, show that the points (p_1 , q_1), (p_2 , q_2 ) and (p_3 , q_3) are colliner.

If 2x+1=15;3y-2=16 if x=p(mod 5),y=q(mod 5) then the value of p, q are (i) p=2,q=3 (ii) p=2,q=1 (iii) p=3,q=2 (iv) p=4,q=1

MODERN PUBLICATION-DETERMINANTS-Miscellaneous Exercise on Chapter 4
  1. Prove that the determinant |{:(x,sintheta,costheta),(-sintheta,-x,1),(...

    Text Solution

    |

  2. Without expanding the determinant , prove that |{:(a, a^(2),bc),(b,b...

    Text Solution

    |

  3. Ecaluate [{:(cosalphacosbeta,cosalphasinbeta,-sinalpha),(-sinbeta,co...

    Text Solution

    |

  4. If a, b and c are real numbers, and Delta=|b+cc+a a+b c+a a+bb+c a+bb+...

    Text Solution

    |

  5. Solve the equation |x+a xxxx+a xxxx+a|=0, a!= 0

    Text Solution

    |

  6. Prove that |a^2b c a c+c^2a^2+a bb^2a c a bb^2+b cc^2|=4a^2b^2c^2 .

    Text Solution

    |

  7. If A-^1=[3-1 1-15 6-5 5-2 2] and B=[1 2-2-1 3 0 0-2 1] , find (A B)^(-...

    Text Solution

    |

  8. Let A=[{:(1,-2,1),(-2,3,1),(1,1,5):}]. Verify that ltbtgt (i) [adjA]^...

    Text Solution

    |

  9. Evaluate: [[x,y,x+y],[y,x+y,x],[x+y,x,y]]

    Text Solution

    |

  10. Evaluate the following: |[1,x,y],[1, x+y, y],[1, x, x+y]|

    Text Solution

    |

  11. Using peoperties of determinants in questions 11 to 15, prove that : ...

    Text Solution

    |

  12. Using properties of determinants. Prove that |xx^2 1+p x^3y y^2 1+p y^...

    Text Solution

    |

  13. Using properties of determinants, prove the following: |3"a"-"a"+"...

    Text Solution

    |

  14. Show that |1 1+p1+p+q2 3+2p1+3p+2q3 6+3p 106 p+3q|=1.

    Text Solution

    |

  15. Show that |[sinalpha, cosalpha, cos(alpha+delta)],[sinbeta, cosbeta, ...

    Text Solution

    |

  16. 2/x+3/y+10/z=4, 4/x-6/y+5/z=1, 6/x+9/y-20/z=2

    Text Solution

    |

  17. Choose the correct answer in questions 17 to 19: If a, b, c are in ...

    Text Solution

    |

  18. Choose the correct answer in questions 17 to 19: If x, y, z are non...

    Text Solution

    |

  19. Let A=[(1,sintheta, 1),(-sintheta, 1, sintheta),(-1, -sintheta, 1)], w...

    Text Solution

    |