Home
Class 12
MATHS
Evaluate |{:(.^(x)C(1),,.^(x)C(2),,.^(x)...

Evaluate `|{:(.^(x)C_(1),,.^(x)C_(2),,.^(x)C_(3)),(.^(y)C_(1),,.^(y)C_(2),,.^(y)C_(3)),(.^(x)C_(1),,.^(z)C_(2),,.^(z)C_(3)):}|`

Text Solution

Verified by Experts

The correct Answer is:
`(1)/(12)xyz(x-y)(y-z)(z-x)`
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise Check your understanding|10 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Competition file|14 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise|4 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

|{:(.^(x)C_(r),,.^(x)C_(r+1),,.^(x)C_(r+2)),(.^(y)C_(r),,.^(y)C_(r+1),,.^(y)C_(r+2)),(.^(z)C_(r),,.^(z)C_(r+1),,.^(z)C_(r+2)):}| is equal to

The determinant |^(^^)xC_(1),^(x)C_(2),^(x)C_(3)^(^^)yC_(1),^(y)C_(2),^(y)C_(3)sim zC_(1),zC_(2),zC_(3)] is equal to-

Evaluate det[[x_(C_(1)),x_(C_(2)),x_(C_(3))y_(C_(1)),y_(C_(2)),yC_(3)z_(C_(1)),z_(C_(2)),z_(C_(3))]]

prove that |{:((a-x)^(2),,(a-y)^(2),,(a-z)^(2)),((b-x)^(2),,(b-y)^(2),,(b-z)^(2)),((c-x)^(2),,(c-y)^(2),,(c-z)^(2)):}| |{:((1+ax)^(2),,(1+bx)^(2),,(1+cx)^(2)),((1+ay)^(2),,(1+by)^(2),,(1+cy)^(2)),((1+az)^(2),,(1+bx)^(2),,(1+cz)^(2)):}| =2 (b-c)(c-a)(a-b)xx (y-z) (z-x)(x-y)

if x,y and z are not all zero and connected by the equations a_(1)x+b_(1)y+c_(1)z=0,a_(z)x+b_(2)y+c_(2)z=0 and (p_(1)+lambdaq_(1))x+(p_(2)+lambdaq_(2))y+(p_(3)+lambdaq_(3))z=0 show that lambda =-|{:(a_(1),,b_(1),,c_(1)),(a_(2) ,,b_(2),,c_(2)),(p_(1) ,, p_(2),,p_(3)):}|-:|{:(a_(1),,b_(1),,c_(1)),(a_(2) ,,b_(2),,c_(2)),(q_(1) ,, q_(2),,q_(3)):}|

STATEMENT-1: If three points (x_(1),y_(1)),(x_(2),y_(2)),(x_(3),y_(3)) are collinear, then |{:(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1):}|=0 STATEMENT-2: If |{:(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1):}|=0 then the points (x_(1),y_(1)),(x_(2),y_(2)),(x_(3),y_(3)) will be collinear. STATEMENT-3: If lines a_(1)x+b_(1)y+c_(1)=0,a_(2)=0and a_(3)x+b_(3)y+c_(3)=0 are concurrent then |{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|=0

Show that |^x C_r^x C_(r+1)^x C_(r+2)^y C_r^y C_(r+1)^y C_(r+2)^z C_r^z C_(r+1)^z C_(r+1)|=|^x C_r^(x+1)C_(r+1)^(x+2)C_(r+2)^y C_r^(y+1)C_(r+1)^(y+2)C_(r+2)^z C_r^(z+1)C_(r+1)^(z+2)C_(r+1)| .

Prove that the value of each the following determinants is zero: (a^(x)+a^(-x))^(2),(a^(x)-a^(-x))^(2),1(b^(y)+b^(-y))^(2),(b^(y)-+b^(-y))^(2),1(c^(z)+c^(-z))^(2),(c^(z)-c^(-z))^(2),1]|

MODERN PUBLICATION-DETERMINANTS-Revision Exercise
  1. Prove that Delta=|(1,bc+ad,b^(2)c^(2)+a^(2)d^(2)),(1,ca+bd,c^(2)a^(2)+...

    Text Solution

    |

  2. |[(a+1)(a+2),a+2,1],[(a+2)(a+3),a+3,1],[(a+3)(a+4),a+4,1]|=-2

    Text Solution

    |

  3. Evaluate |{:(.^(x)C(1),,.^(x)C(2),,.^(x)C(3)),(.^(y)C(1),,.^(y)C(2),,....

    Text Solution

    |

  4. Prove that Delta=[a+b x c+dx p+q x a x+b c x+d p x+q u v w]=(1-x^2)|a ...

    Text Solution

    |

  5. Ecaluate [{:(cosalphacosbeta,cosalphasinbeta,-sinalpha),(-sinbeta,co...

    Text Solution

    |

  6. If |(1,1,1),(a,b,c),(a^(3),b^(3),c^(3))|= (a -b) (b -c) (c -a) (a + b+...

    Text Solution

    |

  7. Solve for x in R : |((x+a)(x-a),(x+b)(x-b),(x+c)(x-c)),((x-a)^3,(x-b)...

    Text Solution

    |

  8. If a,b,c are in A.P. find the value of: ||2y+4, 5y+7, 8y+a],[3y+5, 6y+...

    Text Solution

    |

  9. If ax^(2)+2hxy+by^(2)+2gx+2fy+c-=(lx+my+n)(l'x+m'y+n'), then prove tha...

    Text Solution

    |

  10. If a+b+c=0 and |[a-x,c,b],[c,b-x,a],[b,a,c-x]|=0 then x=

    Text Solution

    |

  11. If A+B+C=pi, then value of |{:(sin(A+B+C),sinB,cosC),(-sinB,0,tanA),(c...

    Text Solution

    |

  12. Using properties of determinants. Prove that |xx^2 1+p x^3y y^2 1+p y^...

    Text Solution

    |

  13. If A=[[3,-3,4],[2,-3,4],[0,-1,1]] , then

    Text Solution

    |

  14. If A=[{:(3,-3,4),(2,-3,4),(0,-1,1):}], then show that A^(3)=A^(-1).

    Text Solution

    |

  15. If A=[1tanx-tanx1] , show that A^T\ A^(-1)=[cos2x-sin2xsin2xcos2x] .

    Text Solution

    |

  16. If A=[(2,-3),(4,6)] " verify that " (adj A)^(-1)=(adj A^(-1)).

    Text Solution

    |

  17. Prove that : adj. I(n)=I(n)

    Text Solution

    |

  18. Prove that : adj.O=O

    Text Solution

    |

  19. Prove that : I(n)^(-1)=I(n)

    Text Solution

    |

  20. Find the inverse of each of the matrices given below : Let D= "dia...

    Text Solution

    |