Home
Class 12
MATHS
If A=[(2,-3),(4,6)] " verify that " (adj...

If `A=[(2,-3),(4,6)] " verify that " (adj A)^(-1)=(adj A^(-1))`.

Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise Check your understanding|10 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Competition file|14 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise|4 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

Prove that ("adj. "A)^(-1)=("adj. "A^(-1)) .

Let A=[{:(1,-2,1),(-2,3,1),(1,1,5):}] . Verify that ltbtgt (i) [adjA]^(-1)=adj (A^(-1)) (ii) (A^(-1)^(-1)=A

If A=[[3,1],[7,5]] , verify that A. ("adj " A) = ("adj " A). A= |A|. I.

If A=[[1,0,-1],[3,4,5],[0,-6,-7]] , verify that A.(adj A) = (adj A). A= |A|.I.

If A={:[(1,2),(3,4)]:}," then: " adj(adjA)=

If A=[{:(2,5),(1,3):}] , find adj A .

If A = {:((1,-1,2),(3,0,-2),(1,0,3)):} , verify that A (adj A) = |A|* I .

If A=[{:(1,3,3),(1,4,3),(1,3,4):}] , verify A.(adj.A)=|A|I and find A^(-1) .

If A = [(1,1,1),(1,2,-3),(2,-1,3)] then | adj A| =

MODERN PUBLICATION-DETERMINANTS-Revision Exercise
  1. Solve for x in R : |((x+a)(x-a),(x+b)(x-b),(x+c)(x-c)),((x-a)^3,(x-b)...

    Text Solution

    |

  2. If a,b,c are in A.P. find the value of: ||2y+4, 5y+7, 8y+a],[3y+5, 6y+...

    Text Solution

    |

  3. If ax^(2)+2hxy+by^(2)+2gx+2fy+c-=(lx+my+n)(l'x+m'y+n'), then prove tha...

    Text Solution

    |

  4. If a+b+c=0 and |[a-x,c,b],[c,b-x,a],[b,a,c-x]|=0 then x=

    Text Solution

    |

  5. If A+B+C=pi, then value of |{:(sin(A+B+C),sinB,cosC),(-sinB,0,tanA),(c...

    Text Solution

    |

  6. Using properties of determinants. Prove that |xx^2 1+p x^3y y^2 1+p y^...

    Text Solution

    |

  7. If A=[[3,-3,4],[2,-3,4],[0,-1,1]] , then

    Text Solution

    |

  8. If A=[{:(3,-3,4),(2,-3,4),(0,-1,1):}], then show that A^(3)=A^(-1).

    Text Solution

    |

  9. If A=[1tanx-tanx1] , show that A^T\ A^(-1)=[cos2x-sin2xsin2xcos2x] .

    Text Solution

    |

  10. If A=[(2,-3),(4,6)] " verify that " (adj A)^(-1)=(adj A^(-1)).

    Text Solution

    |

  11. Prove that : adj. I(n)=I(n)

    Text Solution

    |

  12. Prove that : adj.O=O

    Text Solution

    |

  13. Prove that : I(n)^(-1)=I(n)

    Text Solution

    |

  14. Find the inverse of each of the matrices given below : Let D= "dia...

    Text Solution

    |

  15. Let F(alpha)=[{:(cosalpha,-sinalpha,0),(sinalpha,cosalpha,0),(0,0,1):}...

    Text Solution

    |

  16. Find the inverse of each of the matrices given below : Obtain the in...

    Text Solution

    |

  17. Use product [1-1 2 0 2-3 3-2 4]\ \ [-2 0 1 9 2-3 6 1-2] to solve th...

    Text Solution

    |

  18. If a!=p ,b!=q ,c!=ra n d|p b c a q c a b r|=0, then find the value of ...

    Text Solution

    |

  19. Suppose that digit numbers A28,3B9 and 62 C, where A,B and C are integ...

    Text Solution

    |

  20. let a > 0 , d > 0 find the value of the determinant |[1/a,1/(a(a + d))...

    Text Solution

    |