Home
Class 12
MATHS
Suppose that digit numbers A28,3B9 and 6...

Suppose that digit numbers A28,3B9 and 62 C, where A,B and C are integers between 0 and 9 are divisible by a fixed integer k, prove that the determinant `|{:(A,3,6),(8,9,C),(2,B,2):}|` is also divisible by k.

Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise Check your understanding|10 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Competition file|14 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise|4 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

The digits A,B,C are such that the three digit numbers A88, 6B8, 86 C are divisible by 72 the determinant |{:(A,6,8),(8,B,6),(8,8,C):}| is divisible by

If 3 digit numbers A28,3B9 and 62C are divisible by a fixed constant 'K' where A,B,C are integers lying between 0 and 9, then determinant det[[8,9,C8,9,C2,B,2]] is always divisible by

The digits A,B,C are such that the three dioit numbers A88,6B8,86C are divisible by 72, then the determinant det[[8,6,88,B,68,8,C]] is divisible by

Number of integers greater than 7000 and divisible by 5 that can be formed using only the digits 3, 6, 7, 8 and 9, no digit being repeated, is

A three-digit number 2 a 3 is added to the number 326 to give a three-digit number 5b9 which is divisible by 9. Find the value of b - a

Number of integers greater than 7000 and divisible by 5 that can be formed using only the digits 3,5,7,8 and 9 no digit being repeated,is

Prove that 5^(2n)-6n+8 is divisible by 9 for all possible integers n.

If a and b are two odd positive integers,by which of the following integers is (a^(4)-b^(4)) always divisible? 3 (b) 6(c)8(d)12

MODERN PUBLICATION-DETERMINANTS-Revision Exercise
  1. Solve for x in R : |((x+a)(x-a),(x+b)(x-b),(x+c)(x-c)),((x-a)^3,(x-b)...

    Text Solution

    |

  2. If a,b,c are in A.P. find the value of: ||2y+4, 5y+7, 8y+a],[3y+5, 6y+...

    Text Solution

    |

  3. If ax^(2)+2hxy+by^(2)+2gx+2fy+c-=(lx+my+n)(l'x+m'y+n'), then prove tha...

    Text Solution

    |

  4. If a+b+c=0 and |[a-x,c,b],[c,b-x,a],[b,a,c-x]|=0 then x=

    Text Solution

    |

  5. If A+B+C=pi, then value of |{:(sin(A+B+C),sinB,cosC),(-sinB,0,tanA),(c...

    Text Solution

    |

  6. Using properties of determinants. Prove that |xx^2 1+p x^3y y^2 1+p y^...

    Text Solution

    |

  7. If A=[[3,-3,4],[2,-3,4],[0,-1,1]] , then

    Text Solution

    |

  8. If A=[{:(3,-3,4),(2,-3,4),(0,-1,1):}], then show that A^(3)=A^(-1).

    Text Solution

    |

  9. If A=[1tanx-tanx1] , show that A^T\ A^(-1)=[cos2x-sin2xsin2xcos2x] .

    Text Solution

    |

  10. If A=[(2,-3),(4,6)] " verify that " (adj A)^(-1)=(adj A^(-1)).

    Text Solution

    |

  11. Prove that : adj. I(n)=I(n)

    Text Solution

    |

  12. Prove that : adj.O=O

    Text Solution

    |

  13. Prove that : I(n)^(-1)=I(n)

    Text Solution

    |

  14. Find the inverse of each of the matrices given below : Let D= "dia...

    Text Solution

    |

  15. Let F(alpha)=[{:(cosalpha,-sinalpha,0),(sinalpha,cosalpha,0),(0,0,1):}...

    Text Solution

    |

  16. Find the inverse of each of the matrices given below : Obtain the in...

    Text Solution

    |

  17. Use product [1-1 2 0 2-3 3-2 4]\ \ [-2 0 1 9 2-3 6 1-2] to solve th...

    Text Solution

    |

  18. If a!=p ,b!=q ,c!=ra n d|p b c a q c a b r|=0, then find the value of ...

    Text Solution

    |

  19. Suppose that digit numbers A28,3B9 and 62 C, where A,B and C are integ...

    Text Solution

    |

  20. let a > 0 , d > 0 find the value of the determinant |[1/a,1/(a(a + d))...

    Text Solution

    |