Home
Class 12
MATHS
Prove that |{:(a^(2)+1,ab,ac),(ab,b^(2...

Prove that
`|{:(a^(2)+1,ab,ac),(ab,b^(2)+1,bc),(ac,bc,c^(2)+1):}|=1+a^(2)+b^(2)+c^(2)`.

Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise Competition file|14 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

What is |{:(-a^(2),ab,ac),(ab,-b^(2),bc),(ac,bc,-c^(2)):}| equal to ?

Prove that : (i) |{:(a,c,a+c),(a+b,b,a),(b,b+c,c):}|=2 abc (ii) Prove that : |{:(a^(2),bc,ac+c^(2)),(a^(2)+ab,b^(2),ac),(ab,b^(2)+bc,c^(2)):}|=4a^(2)b^(2)c^(2)

What is the value of |(-a^(2),ab,ac),(ab,-b^(2),bc),(ac,bc,-c^(2))| ?

Prove that |{:(1, a, a^(2)-bc),(1, b, b^(2)-ca), (1, c, c^(2)-ab):}|=0

If A=[{:(0,c,-b),(-c,0,a),(b,-a,0):}] and B=[{:(a^(2),ab,ac),(ab,b^(2),bc),(ac,bc,c^(2)):}] , then (A+B)^(2)=

If D=|(a^(2)+1,ab,ac),(ba,b^(2)+1,bc),(ca,cb,c^(2)+1)| then D equal to

The determinant Delta=|{:(,a^(2)(1+x),ab,ac),(,ab,b^(2)(1+x),(bc)),(,ac,bc,c^(2)(1+x)):}| is divisible by

The determinant Delta = |(a^(2) + x^(2),ab,ac),(ab,b^(2) + x^(2),bc),(ac,bc,c^(2) + x^(2))| is divisible