Home
Class 12
MATHS
f(x)=cossqrtx. find dy/dx...

`f(x)=cossqrtx`. find `dy/dx`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( f(x) = \cos(\sqrt{x}) \), we will use the chain rule of differentiation. Here’s a step-by-step solution: ### Step 1: Identify the outer and inner functions In the function \( f(x) = \cos(\sqrt{x}) \): - The outer function is \( \cos(u) \) where \( u = \sqrt{x} \). - The inner function is \( u = \sqrt{x} \). ### Step 2: Differentiate the outer function The derivative of the outer function \( \cos(u) \) with respect to \( u \) is: \[ \frac{d}{du}[\cos(u)] = -\sin(u) \] ### Step 3: Differentiate the inner function Next, we differentiate the inner function \( u = \sqrt{x} \): \[ \frac{d}{dx}[\sqrt{x}] = \frac{1}{2\sqrt{x}} \] ### Step 4: Apply the chain rule Using the chain rule, we combine the derivatives of the outer and inner functions: \[ \frac{dy}{dx} = \frac{d}{du}[\cos(u)] \cdot \frac{du}{dx} = -\sin(\sqrt{x}) \cdot \frac{1}{2\sqrt{x}} \] ### Step 5: Write the final answer Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = -\frac{\sin(\sqrt{x})}{2\sqrt{x}} \] ### Summary of the solution: The final result is: \[ \frac{dy}{dx} = -\frac{\sin(\sqrt{x})}{2\sqrt{x}} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(d) (SHORT ANSWER TYPE QUESTIONS)|26 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(e) (SHORT ANSWER TYPE QUESTIONS)|23 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(b) (LONG ANSWER TYPE QUESTIONS (I))|17 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

y=a^x , find dy/dx

If f(x)=sinx then find dy/dx if y=cosxf(x^2)

If y=x^(sqrt(x)) find (dy)/(dx)

f(x)=3/(2-x),xne2 find dy/dx

y=(1/x)^x find dy/dx

y=x^(1/x) find dy/dx

If y=f((2x-1)/(x^(2)+1)) and f'(x)=sin x^(2), find (dy)/(dx)

If y = f(x^2) and f'(x) = e^(sqrtx) , then find (dy)/(dx)

x^(x)+(tanx)^(x) find dy/dx