Home
Class 12
MATHS
f(x)=(3x^(2)+2)^(3)(5x-1)^(2) find dy/d...

`f(x)=(3x^(2)+2)^(3)(5x-1)^(2)` find `dy/dx`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( \frac{dy}{dx} \) for the function \( f(x) = (3x^2 + 2)^3 (5x - 1)^2 \), we will apply the product rule and the chain rule. ### Step-by-Step Solution: 1. **Identify the components**: Let \( u = (3x^2 + 2)^3 \) and \( v = (5x - 1)^2 \). We need to differentiate \( y = u \cdot v \). 2. **Apply the product rule**: The product rule states that \( \frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx} \). 3. **Differentiate \( u \)**: To differentiate \( u = (3x^2 + 2)^3 \), we use the chain rule: \[ \frac{du}{dx} = 3(3x^2 + 2)^2 \cdot \frac{d}{dx}(3x^2 + 2) = 3(3x^2 + 2)^2 \cdot (6x) = 18x(3x^2 + 2)^2 \] 4. **Differentiate \( v \)**: To differentiate \( v = (5x - 1)^2 \), we again use the chain rule: \[ \frac{dv}{dx} = 2(5x - 1) \cdot \frac{d}{dx}(5x - 1) = 2(5x - 1) \cdot 5 = 10(5x - 1) \] 5. **Substitute back into the product rule**: Now, substituting \( u \), \( v \), \( \frac{du}{dx} \), and \( \frac{dv}{dx} \) into the product rule: \[ \frac{dy}{dx} = (3x^2 + 2)^3 \cdot 10(5x - 1) + (5x - 1)^2 \cdot 18x(3x^2 + 2)^2 \] 6. **Factor out common terms**: Notice that \( (3x^2 + 2)^2 \) and \( (5x - 1) \) are common in both terms: \[ \frac{dy}{dx} = (3x^2 + 2)^2 (5x - 1) \left[ 10(3x^2 + 2) + 18x(5x - 1) \right] \] 7. **Simplify the expression inside the brackets**: Now, we simplify \( 10(3x^2 + 2) + 18x(5x - 1) \): \[ = 30x^2 + 20 + 90x^2 - 18x = 120x^2 - 18x + 20 \] 8. **Final derivative**: Thus, the final expression for the derivative is: \[ \frac{dy}{dx} = (3x^2 + 2)^2 (5x - 1)(120x^2 - 18x + 20) \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(d) (SHORT ANSWER TYPE QUESTIONS)|26 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(e) (SHORT ANSWER TYPE QUESTIONS)|23 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(b) (LONG ANSWER TYPE QUESTIONS (I))|17 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

y=(x-1)^3(x+1)^2 find dy/dx

y=((3x^(2)+1)sqrt(1+x^(2)))/(x^(3)) find dy/dx

If y=(x(1+x)^3)/(x^2+1/x^2)^3 , find dy/dx

y=sqrt(((x-1)(x-2))/((x-3)(x-4)(x-5))), find (dy)/(dx)

y=(e^(xx)x sin xx x(x+1)^(2))/((2x+1)^(3)x^(5)),( find )(dy)/(dx)

y=sqrt(((2x+3)^(5))/((3x-1)^(3)(5x-2))) Find dy/dx

f(x)=3/(2-x),xne2 find dy/dx

If y=(x^2+1/x^2)^3 , find dy/dx

y=(x-1)/((x-2)(x-3)) , find dy/dx

If y=sqrt(((x-3)(x^(2)+4))/((3x^(2)+4x+5))) , find (dy)/(dx) .