Home
Class 12
MATHS
f(x)=(2x^(2)+3)^(5/3)(x+5)^((-1)/3)...

`f(x)=(2x^(2)+3)^(5/3)(x+5)^((-1)/3)`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( f(x) = (2x^2 + 3)^{5/3} (x + 5)^{-1/3} \), we will use the product rule of differentiation. The product rule states that if you have two functions \( u(x) \) and \( v(x) \), then the derivative \( f'(x) \) is given by: \[ f'(x) = u'v + uv' \] ### Step 1: Identify \( u \) and \( v \) Let: - \( u = (2x^2 + 3)^{5/3} \) - \( v = (x + 5)^{-1/3} \) ### Step 2: Differentiate \( u \) To differentiate \( u \), we will use the chain rule. The chain rule states that if \( y = g(h(x)) \), then \( \frac{dy}{dx} = g'(h(x)) \cdot h'(x) \). 1. Differentiate \( u \): \[ u' = \frac{d}{dx}[(2x^2 + 3)^{5/3}] = \frac{5}{3}(2x^2 + 3)^{\frac{5}{3} - 1} \cdot (4x) = \frac{20x}{3}(2x^2 + 3)^{2/3} \] ### Step 3: Differentiate \( v \) Now, differentiate \( v \): \[ v' = \frac{d}{dx}[(x + 5)^{-1/3}] = -\frac{1}{3}(x + 5)^{-4/3} \cdot (1) = -\frac{1}{3}(x + 5)^{-4/3} \] ### Step 4: Apply the Product Rule Now, we can apply the product rule: \[ f'(x) = u'v + uv' \] Substituting \( u, u', v, \) and \( v' \): \[ f'(x) = \left(\frac{20x}{3}(2x^2 + 3)^{2/3}\right)(x + 5)^{-1/3} + (2x^2 + 3)^{5/3}\left(-\frac{1}{3}(x + 5)^{-4/3}\right) \] ### Step 5: Simplify the Expression Now, let's simplify the expression: \[ f'(x) = \frac{20x}{3}(2x^2 + 3)^{2/3}(x + 5)^{-1/3} - \frac{1}{3}(2x^2 + 3)^{5/3}(x + 5)^{-4/3} \] ### Step 6: Combine the Terms To combine the terms, we can factor out common terms: \[ f'(x) = \frac{1}{3}(2x^2 + 3)^{2/3}(x + 5)^{-4/3} \left(20x(x + 5) - (2x^2 + 3)\right) \] ### Step 7: Final Expression Thus, the final derivative is: \[ f'(x) = \frac{1}{3}(2x^2 + 3)^{2/3}(x + 5)^{-4/3} \left(20x^2 + 100x - 2x^2 - 3\right) \] \[ = \frac{1}{3}(2x^2 + 3)^{2/3}(x + 5)^{-4/3} \left(18x^2 + 100x - 3\right) \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(d) (SHORT ANSWER TYPE QUESTIONS)|26 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(e) (SHORT ANSWER TYPE QUESTIONS)|23 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(b) (LONG ANSWER TYPE QUESTIONS (I))|17 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

Solve the inequality if f(x)=((x-2)^(10)(x+1)^(3)(x-((1)/(2)))^(5)(x+8)^(2))/(x^(24)(x-3)^(3)(x+2)^(5))is>0 or <0

If quad f=(x)/(1+x^(2))+(1)/(3)((x)/(1+x^(2)))^(3)+(1)/(5)((x)/(1+x^(2)))^(5)+ and g=x-(2)/(3)x^(3)+(1)/(5)x^(5)+(1)/(7)x^(7)-.... then

if f(x)=(x^(3))/(3)-x^(2)+(1)/(5) find maximum and minimum value of f(x)

f(x)=(3x^(2)+2)^(3)(5x-1)^(2) find dy/dx

Find gof and fog wehn f:R rarr R and g:R rarr R are defined by f(x)=2x+3 and g(x)=x^(2)+5f(x)=2x+x^(2) and g(x)=x^(3)f(x)=x^(2)+8 and g(x)=3x^(3)+1f(x)=8x^(3) and g(x)=x^(1/3)+1f(x)=8x^(3) and

f(x)=-(1)/(3)x^(3)+5x^(2)+12

Let f:A rarr B be an invertible function.If f(x)=2x^(3)+3x^(2)+x-1, then f^(-1)(5)=

Given f(x)=(1)/((x^(2)+2x+1)^((1)/(3))+(x^(2)-1)^((1)/(3))+(x^(2)-2x+1)^((1)/(3))) and E=f(1)+f(3)+f(5)+............+f(999)

Find domain(i) f(x) = (1)/(x - 5) (ii) f(x) = (3 - x)/(x - 3) (iii) f(x) = (x^(2) - 1)/(x - 1) (iv) f(x) = (| x - 3 |)/(x - 3) (v) f(x) = (1)/(2 - sin 3x)

f(x)=9x^(3)-3x^(2)+x-5,g(x)=x-(2)/(3)