Home
Class 12
MATHS
Use Chain Rule to find dy/dx," if "y=((3...

Use Chain Rule to find `dy/dx," if "y=((3x-1)/(3x+1))^(2)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find \( \frac{dy}{dx} \) for the function \( y = \left(\frac{3x - 1}{3x + 1}\right)^2 \) using the Chain Rule, we can follow these steps: ### Step 1: Identify the outer and inner functions Let: - \( u = \frac{3x - 1}{3x + 1} \) (inner function) - \( y = u^2 \) (outer function) ### Step 2: Differentiate the outer function Using the Chain Rule: \[ \frac{dy}{du} = 2u \] ### Step 3: Differentiate the inner function To differentiate \( u \), we will use the quotient rule: \[ u = \frac{a}{b} \quad \text{where } a = 3x - 1 \text{ and } b = 3x + 1 \] The quotient rule states: \[ \frac{du}{dx} = \frac{b \cdot \frac{da}{dx} - a \cdot \frac{db}{dx}}{b^2} \] Calculating \( \frac{da}{dx} \) and \( \frac{db}{dx} \): - \( \frac{da}{dx} = 3 \) - \( \frac{db}{dx} = 3 \) Now substituting into the quotient rule: \[ \frac{du}{dx} = \frac{(3x + 1)(3) - (3x - 1)(3)}{(3x + 1)^2} \] Simplifying the numerator: \[ = \frac{(9x + 3) - (9x - 3)}{(3x + 1)^2} = \frac{6}{(3x + 1)^2} \] ### Step 4: Apply the Chain Rule Now, using the Chain Rule: \[ \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = 2u \cdot \frac{du}{dx} \] Substituting \( u \) and \( \frac{du}{dx} \): \[ \frac{dy}{dx} = 2\left(\frac{3x - 1}{3x + 1}\right) \cdot \frac{6}{(3x + 1)^2} \] ### Step 5: Simplify the expression \[ \frac{dy}{dx} = \frac{12(3x - 1)}{(3x + 1)^3} \] ### Final Answer Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = \frac{12(3x - 1)}{(3x + 1)^3} \] ---
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(d) (SHORT ANSWER TYPE QUESTIONS)|26 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(e) (SHORT ANSWER TYPE QUESTIONS)|23 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(b) (LONG ANSWER TYPE QUESTIONS (I))|17 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

Use Chain rule of find (dy)/(dx),"if "y=((2x-1)/(2x+1))^(2) .

Find dy/dx if y=(x^3-2x-1)^5

Find dy/dx if : y=(x-1)^(-3),xne1

find (dy)/(dx) if y=2(3x-2),x=4

Find dy/dx if y=3^x.tan^(-1)x

Find dy/dx y=(3+x^2)^(1/2)

1.Find (dy)/(dx) , if y=x^(2)+3^(x)

Find (dy)/(dx) , if y = root(3)((3x-1)/((2x+3)(5-x)^(2)))

" 3.Find "(dy)/(dx)" if "x^(2)y^(x)=1