Home
Class 12
MATHS
Find dy/dx if : y=(x-1)^(-3),xne1...

Find `dy/dx` if :
`y=(x-1)^(-3),xne1`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the function \(y = (x - 1)^{-3}\), we will use the power rule of differentiation. Here are the steps: ### Step-by-Step Solution: 1. **Identify the function**: \[ y = (x - 1)^{-3} \] 2. **Apply the power rule**: The power rule states that if \(y = u^n\), then \(\frac{dy}{dx} = n \cdot u^{n-1} \cdot \frac{du}{dx}\). In our case, \(u = (x - 1)\) and \(n = -3\). 3. **Differentiate the outer function**: \[ \frac{dy}{du} = -3 \cdot (x - 1)^{-4} \] 4. **Differentiate the inner function**: The derivative of \(u = (x - 1)\) with respect to \(x\) is: \[ \frac{du}{dx} = 1 \] 5. **Combine the derivatives**: Now, we apply the chain rule: \[ \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = -3 \cdot (x - 1)^{-4} \cdot 1 \] 6. **Final result**: Thus, we have: \[ \frac{dy}{dx} = -\frac{3}{(x - 1)^4} \] ### Final Answer: \[ \frac{dy}{dx} = -\frac{3}{(x - 1)^4} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(d) (SHORT ANSWER TYPE QUESTIONS)|26 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(e) (SHORT ANSWER TYPE QUESTIONS)|23 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(b) (LONG ANSWER TYPE QUESTIONS (I))|17 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

Find dy/dx if y=(x^3-2x-1)^5

Find dy/dx if y = x^(1/x)

Find (dy)/(dx) if "y=(x+1)/(x)

Find dy/dx if y=3^x.tan^(-1)x

Find (dy)/(dx) if: y=(1+x^2)^(1/2)

Find (dy)/(dx) if y = (x+1/x)^(1/x)

Find (dy)/(dx) of y=(1+1/x)^x

If (sin x)^2 =x+y find (dy)/(dx) Find (dy)/(dx) if y=sin^(-1)[2^(x+1)/(1+4^x)]

Find (dy)/(dx) ,if y=(x^(2)+1)(x^(2)-1)