Home
Class 12
MATHS
Find dy/dx if : y=1-2((5x)/(3x+2))^(2)...

Find `dy/dx` if :
`y=1-2((5x)/(3x+2))^(2)+((5x)/(3x+2))^(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the function \[ y = 1 - 2\left(\frac{5x}{3x+2}\right)^2 + \left(\frac{5x}{3x+2}\right)^3, \] we will follow these steps: ### Step 1: Substitute \(v\) Let \[ v = \frac{5x}{3x + 2}. \] Then, we can rewrite \(y\) in terms of \(v\): \[ y = 1 - 2v^2 + v^3. \] ### Step 2: Differentiate \(y\) with respect to \(v\) Now, we differentiate \(y\) with respect to \(v\): \[ \frac{dy}{dv} = \frac{d}{dv}(1 - 2v^2 + v^3) = 0 - 4v + 3v^2 = 3v^2 - 4v. \] ### Step 3: Differentiate \(v\) with respect to \(x\) Next, we need to find \(\frac{dv}{dx}\). We use the quotient rule for differentiation: \[ v = \frac{u}{w} \quad \text{where } u = 5x \text{ and } w = 3x + 2. \] Using the quotient rule: \[ \frac{dv}{dx} = \frac{w \frac{du}{dx} - u \frac{dw}{dx}}{w^2}. \] Calculating \(\frac{du}{dx}\) and \(\frac{dw}{dx}\): - \(\frac{du}{dx} = 5\) - \(\frac{dw}{dx} = 3\) Now substituting these into the quotient rule: \[ \frac{dv}{dx} = \frac{(3x + 2)(5) - (5x)(3)}{(3x + 2)^2} = \frac{15x + 10 - 15x}{(3x + 2)^2} = \frac{10}{(3x + 2)^2}. \] ### Step 4: Apply the chain rule Now we can find \(\frac{dy}{dx}\) using the chain rule: \[ \frac{dy}{dx} = \frac{dy}{dv} \cdot \frac{dv}{dx} = (3v^2 - 4v) \cdot \frac{10}{(3x + 2)^2}. \] ### Step 5: Substitute back \(v\) Substituting back \(v = \frac{5x}{3x + 2}\): \[ \frac{dy}{dx} = (3\left(\frac{5x}{3x + 2}\right)^2 - 4\left(\frac{5x}{3x + 2}\right)) \cdot \frac{10}{(3x + 2)^2}. \] ### Step 6: Simplify the expression Now we simplify: 1. Calculate \(3\left(\frac{5x}{3x + 2}\right)^2 = \frac{75x^2}{(3x + 2)^2}\). 2. Calculate \(4\left(\frac{5x}{3x + 2}\right) = \frac{20x}{3x + 2}\). Thus, we have: \[ \frac{dy}{dx} = \left(\frac{75x^2}{(3x + 2)^2} - \frac{20x(3x + 2)}{(3x + 2)^2}\right) \cdot \frac{10}{(3x + 2)^2}. \] Combine the fractions: \[ \frac{dy}{dx} = \frac{75x^2 - 60x - 40}{(3x + 2)^4} \cdot 10. \] ### Final Result Thus, the final expression for \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = \frac{10(75x^2 - 60x - 40)}{(3x + 2)^4}. \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(d) (SHORT ANSWER TYPE QUESTIONS)|26 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(e) (SHORT ANSWER TYPE QUESTIONS)|23 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(b) (LONG ANSWER TYPE QUESTIONS (I))|17 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

Find dy/dx if y=(x^3-2x-1)^5

Find (dy)/(dx) , when: y=(2x+3)^(5)(3x-5)^(7)(5x-1)^(3)

find (dy)/(dx) if y=2(3x-2),x=4

Find (dy)/(dx) , when: y=(2-x)^(3)(3+2x)^(5)

Find (dy)/(dx) , when: y=(x+1)^(3)(3+2x)^(5)

Find (dy)/(dx) , if y = root(3)((3x-1)/((2x+3)(5-x)^(2)))

Find (dy)/(dx) , if y= root(5)((3x^(2) + 8x+ 5)^(4))

Find (dy)/(dx) if y=tan^(-1)(4x)/(1+5x^(2))+tan^(-1)(2+3x)/(3-2x)