Home
Class 12
MATHS
Find dy/dx if : y=at^(2),t=x/(2a)...

Find `dy/dx` if :
`y=at^(2),t=x/(2a)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) given \(y = at^2\) and \(t = \frac{x}{2a}\), we can follow these steps: ### Step 1: Substitute \(t\) in terms of \(x\) into the equation for \(y\) We have: \[ t = \frac{x}{2a} \] Substituting this into the equation for \(y\): \[ y = a\left(\frac{x}{2a}\right)^2 \] ### Step 2: Simplify the expression for \(y\) Calculating \(y\): \[ y = a\left(\frac{x^2}{(2a)^2}\right) = a\left(\frac{x^2}{4a^2}\right) = \frac{ax^2}{4a^2} \] Now, simplifying further: \[ y = \frac{x^2}{4a} \] ### Step 3: Differentiate \(y\) with respect to \(x\) Now we differentiate \(y\) with respect to \(x\): \[ \frac{dy}{dx} = \frac{d}{dx}\left(\frac{x^2}{4a}\right) \] Using the power rule: \[ \frac{dy}{dx} = \frac{1}{4a} \cdot 2x = \frac{2x}{4a} = \frac{x}{2a} \] ### Final Answer Thus, the derivative \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = \frac{x}{2a} \] ---
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(d) (SHORT ANSWER TYPE QUESTIONS)|26 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(e) (SHORT ANSWER TYPE QUESTIONS)|23 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(b) (LONG ANSWER TYPE QUESTIONS (I))|17 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) if y=sin(x^(2))

Find (dy)/(dx) if y=2^(x^(x))

Find (dy)/(dx) ,if y=sin(x^(2))

Find (dy)/(dx) , if x=a t^2 , y=2a t

Find dy/dx if x=(2at)/(1+t^2) , y=(a(1-t^2))/(1+t^2)

Find (dy)/(dx) , if x=a t^2, y=2a t .

Find dy/dx if 2^(x)+2^(y)=2^(x+y)

Find (dy)/(dx) , if x=2a t^2 , y=a t^4

Find dy/dx: x=(2at)/(1+t^2), y=(a(1-t^2))/(1+t^2)

MODERN PUBLICATION-CONTINUITY AND DIFFERENTIABILITY-EXERCISE 5(c) (SHORT ANSWER TYPE QUESTIONS)
  1. Differentiate the following w.r.t.x : sin(x^2)

    Text Solution

    |

  2. Differentiate the following w.r.t.x : sin^(4)(ax+b)^(2)

    Text Solution

    |

  3. Differentiate the following w.r.t.x : sin(cotx)

    Text Solution

    |

  4. Differentiate the following w.r.t.x : cosec(cotsqrtx)

    Text Solution

    |

  5. Differentiate the following w.r.t.x : sin^(2)(x^(5))

    Text Solution

    |

  6. Differentiate the following w.r.t.x : cos^(2)(x^(3))

    Text Solution

    |

  7. Differentiate the following w.r.t.x : cosx^(3).sin^(2)(x^(5))

    Text Solution

    |

  8. Differentiate the following w.r.t.x : 2sqrt(cot(x^(2)))

    Text Solution

    |

  9. Differentiate the following w.r.t x. (i) cos^(-1)(sinx) (ii) tan^(...

    Text Solution

    |

  10. Differentiate the following w.r.t.x : sqrt(15x^(2)-x+1)

    Text Solution

    |

  11. Differentiate the following w.r.t.x : (sin(ax+b))/(cos(cx+d))

    Text Solution

    |

  12. Differentiate w.r.t. x the function cos" "(a" "cos" "x" "+" "b" "s in"...

    Text Solution

    |

  13. Find dy/dx if : y=9u^(2),u=1-3/2x^(2)

    Text Solution

    |

  14. Find dy/dx if : y=(3-v)/(2+v),v=(4x)/(1-x^(2))

    Text Solution

    |

  15. Find dy/dx if : y=at^(2),t=x/(2a)

    Text Solution

    |

  16. Find (dy)/(dx) at x=1,y=pi/4 if sin^2 y+cos xy0

    Text Solution

    |

  17. If x^(16)y^(9)=(x^(2)+y)^(17), prove that dy/dx=(2y)/x.

    Text Solution

    |

  18. Differentiate the following w.r.t. x: |2x - 1|

    Text Solution

    |

  19. Differentiate the following w.r.t. x: |2x^(2)-3|

    Text Solution

    |

  20. If y+siny=cosx, then find the values of 'y' for which dy/dx is valid.

    Text Solution

    |