Home
Class 12
MATHS
Differentiate the following w.r.t. x: ...

Differentiate the following w.r.t. x:
`|2x^(2)-3|`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( f(x) = |2x^2 - 3| \) with respect to \( x \), we need to consider the points where the expression inside the modulus changes sign. This occurs when \( 2x^2 - 3 = 0 \). ### Step-by-step Solution: 1. **Find the points where the expression inside the modulus is zero:** \[ 2x^2 - 3 = 0 \implies 2x^2 = 3 \implies x^2 = \frac{3}{2} \implies x = \pm \sqrt{\frac{3}{2}} = \pm \frac{\sqrt{6}}{2} \] Thus, the critical points are \( x = -\frac{\sqrt{6}}{2} \) and \( x = \frac{\sqrt{6}}{2} \). 2. **Determine the intervals based on these points:** - Interval 1: \( x < -\frac{\sqrt{6}}{2} \) - Interval 2: \( -\frac{\sqrt{6}}{2} < x < \frac{\sqrt{6}}{2} \) - Interval 3: \( x > \frac{\sqrt{6}}{2} \) 3. **Express \( f(x) \) without the modulus in each interval:** - For \( x < -\frac{\sqrt{6}}{2} \): \[ f(x) = 2x^2 - 3 \quad (\text{since } 2x^2 - 3 > 0) \] - For \( -\frac{\sqrt{6}}{2} < x < \frac{\sqrt{6}}{2} \): \[ f(x) = -(2x^2 - 3) = 3 - 2x^2 \quad (\text{since } 2x^2 - 3 < 0) \] - For \( x > \frac{\sqrt{6}}{2} \): \[ f(x) = 2x^2 - 3 \quad (\text{since } 2x^2 - 3 > 0) \] 4. **Differentiate \( f(x) \) in each interval:** - For \( x < -\frac{\sqrt{6}}{2} \): \[ f'(x) = \frac{d}{dx}(2x^2 - 3) = 4x \] - For \( -\frac{\sqrt{6}}{2} < x < \frac{\sqrt{6}}{2} \): \[ f'(x) = \frac{d}{dx}(3 - 2x^2) = -4x \] - For \( x > \frac{\sqrt{6}}{2} \): \[ f'(x) = \frac{d}{dx}(2x^2 - 3) = 4x \] 5. **Combine the results:** \[ f'(x) = \begin{cases} 4x & \text{if } x < -\frac{\sqrt{6}}{2} \\ -4x & \text{if } -\frac{\sqrt{6}}{2} < x < \frac{\sqrt{6}}{2} \\ 4x & \text{if } x > \frac{\sqrt{6}}{2} \end{cases} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(d) (SHORT ANSWER TYPE QUESTIONS)|26 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(e) (SHORT ANSWER TYPE QUESTIONS)|23 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(b) (LONG ANSWER TYPE QUESTIONS (I))|17 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

Differentiate the following w.r.t. x : x^(x^(2))

Differentiate the following w.r.t. x: 3^(x+2) .

Differentiate the following w.r.t. x: |2x - 1|

Differentiate the following w.r.t. x : e^(-x)

Differentiate the following w.r.t. x : (1/2)^(x)

Differentiate the following w.r.t. x : e^(x^(3))

Differentiate the following w.r.t.x : sin(x^(2))

Differentiate the following w.r.t. x : x^(x^(2)-3)+(x-3)^(x^(2)),"for "xgt3

Differentiate the following w.r.t.x : sin(x^2)

Differentiate the following w.r.t. x : e^(x)/x

MODERN PUBLICATION-CONTINUITY AND DIFFERENTIABILITY-EXERCISE 5(c) (SHORT ANSWER TYPE QUESTIONS)
  1. Differentiate the following w.r.t.x : sin(x^2)

    Text Solution

    |

  2. Differentiate the following w.r.t.x : sin^(4)(ax+b)^(2)

    Text Solution

    |

  3. Differentiate the following w.r.t.x : sin(cotx)

    Text Solution

    |

  4. Differentiate the following w.r.t.x : cosec(cotsqrtx)

    Text Solution

    |

  5. Differentiate the following w.r.t.x : sin^(2)(x^(5))

    Text Solution

    |

  6. Differentiate the following w.r.t.x : cos^(2)(x^(3))

    Text Solution

    |

  7. Differentiate the following w.r.t.x : cosx^(3).sin^(2)(x^(5))

    Text Solution

    |

  8. Differentiate the following w.r.t.x : 2sqrt(cot(x^(2)))

    Text Solution

    |

  9. Differentiate the following w.r.t x. (i) cos^(-1)(sinx) (ii) tan^(...

    Text Solution

    |

  10. Differentiate the following w.r.t.x : sqrt(15x^(2)-x+1)

    Text Solution

    |

  11. Differentiate the following w.r.t.x : (sin(ax+b))/(cos(cx+d))

    Text Solution

    |

  12. Differentiate w.r.t. x the function cos" "(a" "cos" "x" "+" "b" "s in"...

    Text Solution

    |

  13. Find dy/dx if : y=9u^(2),u=1-3/2x^(2)

    Text Solution

    |

  14. Find dy/dx if : y=(3-v)/(2+v),v=(4x)/(1-x^(2))

    Text Solution

    |

  15. Find dy/dx if : y=at^(2),t=x/(2a)

    Text Solution

    |

  16. Find (dy)/(dx) at x=1,y=pi/4 if sin^2 y+cos xy0

    Text Solution

    |

  17. If x^(16)y^(9)=(x^(2)+y)^(17), prove that dy/dx=(2y)/x.

    Text Solution

    |

  18. Differentiate the following w.r.t. x: |2x - 1|

    Text Solution

    |

  19. Differentiate the following w.r.t. x: |2x^(2)-3|

    Text Solution

    |

  20. If y+siny=cosx, then find the values of 'y' for which dy/dx is valid.

    Text Solution

    |