Home
Class 12
MATHS
Find dy/dx for each of the following y...

Find `dy/dx` for each of the following
`y=(sqrtx+1/sqrtx)(1+x+x^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the function \[ y = \left(\sqrt{x} + \frac{1}{\sqrt{x}}\right)(1 + x + x^2), \] we will use the product rule of differentiation, which states that if \(y = u \cdot v\), then \[ \frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx}. \] ### Step 1: Identify \(u\) and \(v\) Let \[ u = \sqrt{x} + \frac{1}{\sqrt{x}} \quad \text{and} \quad v = 1 + x + x^2. \] ### Step 2: Differentiate \(u\) To differentiate \(u\), we need to find \(\frac{du}{dx}\): \[ u = \sqrt{x} + \frac{1}{\sqrt{x}} = x^{1/2} + x^{-1/2}. \] Now, differentiate \(u\): \[ \frac{du}{dx} = \frac{1}{2}x^{-1/2} - \frac{1}{2}x^{-3/2} = \frac{1}{2\sqrt{x}} - \frac{1}{2x^{3/2}}. \] ### Step 3: Differentiate \(v\) Next, differentiate \(v\): \[ v = 1 + x + x^2. \] Now, differentiate \(v\): \[ \frac{dv}{dx} = 0 + 1 + 2x = 1 + 2x. \] ### Step 4: Apply the Product Rule Now we can apply the product rule: \[ \frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx}. \] Substituting the values we found: \[ \frac{dy}{dx} = \left(\sqrt{x} + \frac{1}{\sqrt{x}}\right)(1 + 2x) + (1 + x + x^2)\left(\frac{1}{2\sqrt{x}} - \frac{1}{2x^{3/2}}\right). \] ### Step 5: Simplify the Expression Now, we will simplify the expression: 1. Expand the first term: \[ \left(\sqrt{x} + \frac{1}{\sqrt{x}}\right)(1 + 2x) = \sqrt{x} + 2x\sqrt{x} + \frac{1}{\sqrt{x}} + \frac{2x}{\sqrt{x}} = \sqrt{x} + 2x\sqrt{x} + x^{-1/2} + 2x^{1/2}. \] 2. Expand the second term: \[ (1 + x + x^2)\left(\frac{1}{2\sqrt{x}} - \frac{1}{2x^{3/2}}\right) = \frac{1}{2\sqrt{x}} + \frac{x}{2\sqrt{x}} + \frac{x^2}{2\sqrt{x}} - \left(\frac{1}{2x^{3/2}} + \frac{x}{2x^{3/2}} + \frac{x^2}{2x^{3/2}}\right). \] Combining these terms will give us the final expression for \(\frac{dy}{dx}\). ### Final Result Thus, the derivative \(\frac{dy}{dx}\) can be expressed as: \[ \frac{dy}{dx} = \left(\sqrt{x} + 2x\sqrt{x} + \frac{1}{\sqrt{x}} + 2x^{1/2}\right) + \left(\frac{1 + x + x^2}{2\sqrt{x}} - \frac{1 + x + x^2}{2x^{3/2}}\right). \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(e) (SHORT ANSWER TYPE QUESTIONS)|23 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(e) (LONG ANSWER TYPE QUESTIONS (I))|22 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(c) (SHORT ANSWER TYPE QUESTIONS)|34 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

Find dy/dx for each of the following y=((x-sqrtx)/(1-2x))^(2)

y = x+sqrtx+1/sqrtx

Find dy/dx for the following functions: y= x+ sqrtx + (1/sqrtx)

Obtian (dy)/(dx) for the following : (1-sqrtx)/(1+sqrtx)

Find dy/dx for the following functions: y= ((x-1)(x-2))/sqrtx .

int(sqrtx+1/sqrtx)^2 dx=

f(x)=sqrtx-(1)/(sqrtx)

Evaluate : int ( sqrtx + 1/sqrtx ) dx

int1/(sqrtx(1-sqrtx)dx=

Find the following integrals : int (sqrtx-1/sqrtx)^2 dx

MODERN PUBLICATION-CONTINUITY AND DIFFERENTIABILITY-EXERCISE 5(d) (SHORT ANSWER TYPE QUESTIONS)
  1. Find the derivative of y w.r.t. x in each of the following : y/(x+y)...

    Text Solution

    |

  2. Find the derivatives of f(x) w.r.t. x in the following : f(x)=root(3...

    Text Solution

    |

  3. Find the derivatives of f(x) w.r.t. x in the following : f(x)=root(3...

    Text Solution

    |

  4. Find the derivatives of f(x) w.r.t. x in the following : f(x)=(x^(2)...

    Text Solution

    |

  5. Find the derivatives of f(x) w.r.t. x in the following : g(x)=root(3...

    Text Solution

    |

  6. Obtain dy/dx when : x^(2)+y^(2)+2axy = 0

    Text Solution

    |

  7. Find dy/dx if x^(3)+y^(3)-3axy=0.

    Text Solution

    |

  8. If x^(2)+y^(2)+2gx+2fy+c=0 then (dy)/(dx)=

    Text Solution

    |

  9. Obtain dy/dx when : x^(4)+y^(4)+4xy-100 = 0

    Text Solution

    |

  10. If ax^2+2hxy+by^2=0 then (dy)/(dx)=

    Text Solution

    |

  11. If sqrtx+sqrty=5,"find "dy/dx at (4, 9).

    Text Solution

    |

  12. "If "xsqrt(1+y)+ysqrt(1+x)=0," prove that "(dy)/(dx)=-(1)/((x+1)^(2)).

    Text Solution

    |

  13. If y =sqrtx +(1)/(sqrtx), then the value of (2x (dy)/(dx)+y) is-

    Text Solution

    |

  14. Find dy/dx for each of the following y=(x^(2)+3x+5)(x^(2)-2)^(2)

    Text Solution

    |

  15. Find dy/dx for each of the following y=(sqrtx+1/sqrtx)(1+x+x^(2))

    Text Solution

    |

  16. Find dy/dx for each of the following y=((x-sqrtx)/(1-2x))^(2)

    Text Solution

    |

  17. Find dy/dx for each of the following y=(1/(1+x))(x^(-2)+2/x-1)+root(...

    Text Solution

    |

  18. Find dy/dx for each of the following y=root(3)(x^(2)(x^(2)+3)).

    Text Solution

    |

  19. If cosy=xcos(a+y), with cosa!=+-1, prove that (dy)/(dx)=(cos^2(a+y))/(...

    Text Solution

    |

  20. If siny=x sin(a+y), prove that, (dy)/(dx)=(sin a)/(1-2x cos a +x^(2)).

    Text Solution

    |