Home
Class 12
MATHS
Find dy/dx for each of the following y...

Find `dy/dx` for each of the following
`y=((x-sqrtx)/(1-2x))^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the function \[ y = \left(\frac{x - \sqrt{x}}{1 - 2x}\right)^2, \] we will use the chain rule and the quotient rule. ### Step 1: Identify the inner function Let \[ u = \frac{x - \sqrt{x}}{1 - 2x}. \] Then, we can rewrite \(y\) as: \[ y = u^2. \] ### Step 2: Differentiate using the chain rule Using the chain rule, we have: \[ \frac{dy}{dx} = 2u \cdot \frac{du}{dx}. \] ### Step 3: Differentiate \(u\) using the quotient rule To find \(\frac{du}{dx}\), we apply the quotient rule: \[ \frac{du}{dx} = \frac{v \cdot \frac{d}{dx}(u) - u \cdot \frac{d}{dx}(v)}{v^2}, \] where \(u = x - \sqrt{x}\) and \(v = 1 - 2x\). #### Step 3.1: Differentiate the numerator The numerator \(u = x - \sqrt{x}\) can be differentiated as follows: \[ \frac{d}{dx}(x - \sqrt{x}) = 1 - \frac{1}{2\sqrt{x}}. \] #### Step 3.2: Differentiate the denominator The denominator \(v = 1 - 2x\) can be differentiated as: \[ \frac{d}{dx}(1 - 2x) = -2. \] ### Step 4: Substitute into the quotient rule Now substituting back into the quotient rule: \[ \frac{du}{dx} = \frac{(1 - 2x)\left(1 - \frac{1}{2\sqrt{x}}\right) - (x - \sqrt{x})(-2)}{(1 - 2x)^2}. \] ### Step 5: Simplify the expression Now we simplify the numerator: 1. Expand the first term: \[ (1 - 2x)\left(1 - \frac{1}{2\sqrt{x}}\right) = 1 - \frac{1}{2\sqrt{x}} - 2x + \frac{x}{\sqrt{x}} = 1 - 2x - \frac{1}{2\sqrt{x}} + \sqrt{x}. \] 2. The second term becomes: \[ 2(x - \sqrt{x}) = 2x - 2\sqrt{x}. \] 3. Combine the two parts: \[ 1 - 2x - \frac{1}{2\sqrt{x}} + \sqrt{x} + 2x - 2\sqrt{x} = 1 - \frac{1}{2\sqrt{x}} - \sqrt{x}. \] ### Step 6: Final expression for \(\frac{dy}{dx}\) Now substituting back into the expression for \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = 2u \cdot \frac{1 - \frac{1}{2\sqrt{x}} - \sqrt{x}}{(1 - 2x)^2}. \] Substituting \(u\) back: \[ \frac{dy}{dx} = 2\left(\frac{x - \sqrt{x}}{1 - 2x}\right)\cdot \frac{1 - \frac{1}{2\sqrt{x}} - \sqrt{x}}{(1 - 2x)^2}. \] ### Final Answer Thus, the derivative \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = \frac{2(x - \sqrt{x})\left(1 - \frac{1}{2\sqrt{x}} - \sqrt{x}\right)}{(1 - 2x)^3}. \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(e) (SHORT ANSWER TYPE QUESTIONS)|23 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(e) (LONG ANSWER TYPE QUESTIONS (I))|22 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(c) (SHORT ANSWER TYPE QUESTIONS)|34 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

Find dy/dx for each of the following y=(sqrtx+1/sqrtx)(1+x+x^(2))

Find dy/dx for each of the following y=(x^(2)+3x+5)(x^(2)-2)^(2)

Find dy/dx for each of the following y=root(3)(x^(2)(x^(2)+3)) .

Find (dy)/(dx) in each of the following: x^((2)/(3))+y^((2)/(3))=a^((2)/(3))

Find dy/dx for the following functions: y= x+ sqrtx + (1/sqrtx)

Find dy/dx for the following functions: y= ((x-1)(x-2))/sqrtx .

Find (dy)/(dx) in each of the following: (x^(2)+y^(2))^(2)=xy

Find (dy)/(dx) in the following: y=sin^(-1)(2x sqrt(1-x^(2))),-(1)/(sqrt(2))

Find (dy)/(dx) in the following 2x + 3y = sin x

Find (dy)/(dx) in the following: 2x+3y=sin y

MODERN PUBLICATION-CONTINUITY AND DIFFERENTIABILITY-EXERCISE 5(d) (SHORT ANSWER TYPE QUESTIONS)
  1. Find the derivative of y w.r.t. x in each of the following : y/(x+y)...

    Text Solution

    |

  2. Find the derivatives of f(x) w.r.t. x in the following : f(x)=root(3...

    Text Solution

    |

  3. Find the derivatives of f(x) w.r.t. x in the following : f(x)=root(3...

    Text Solution

    |

  4. Find the derivatives of f(x) w.r.t. x in the following : f(x)=(x^(2)...

    Text Solution

    |

  5. Find the derivatives of f(x) w.r.t. x in the following : g(x)=root(3...

    Text Solution

    |

  6. Obtain dy/dx when : x^(2)+y^(2)+2axy = 0

    Text Solution

    |

  7. Find dy/dx if x^(3)+y^(3)-3axy=0.

    Text Solution

    |

  8. If x^(2)+y^(2)+2gx+2fy+c=0 then (dy)/(dx)=

    Text Solution

    |

  9. Obtain dy/dx when : x^(4)+y^(4)+4xy-100 = 0

    Text Solution

    |

  10. If ax^2+2hxy+by^2=0 then (dy)/(dx)=

    Text Solution

    |

  11. If sqrtx+sqrty=5,"find "dy/dx at (4, 9).

    Text Solution

    |

  12. "If "xsqrt(1+y)+ysqrt(1+x)=0," prove that "(dy)/(dx)=-(1)/((x+1)^(2)).

    Text Solution

    |

  13. If y =sqrtx +(1)/(sqrtx), then the value of (2x (dy)/(dx)+y) is-

    Text Solution

    |

  14. Find dy/dx for each of the following y=(x^(2)+3x+5)(x^(2)-2)^(2)

    Text Solution

    |

  15. Find dy/dx for each of the following y=(sqrtx+1/sqrtx)(1+x+x^(2))

    Text Solution

    |

  16. Find dy/dx for each of the following y=((x-sqrtx)/(1-2x))^(2)

    Text Solution

    |

  17. Find dy/dx for each of the following y=(1/(1+x))(x^(-2)+2/x-1)+root(...

    Text Solution

    |

  18. Find dy/dx for each of the following y=root(3)(x^(2)(x^(2)+3)).

    Text Solution

    |

  19. If cosy=xcos(a+y), with cosa!=+-1, prove that (dy)/(dx)=(cos^2(a+y))/(...

    Text Solution

    |

  20. If siny=x sin(a+y), prove that, (dy)/(dx)=(sin a)/(1-2x cos a +x^(2)).

    Text Solution

    |