Home
Class 12
MATHS
Differentiate the following w.r.t. x : ...

Differentiate the following w.r.t. x :
`tan^(-1)((sqrt(1+a^(2)x^(2))-1)/(ax))`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \tan^{-1} \left( \frac{\sqrt{1 + a^2 x^2} - 1}{ax} \right) \) with respect to \( x \), we will follow these steps: ### Step 1: Rewrite the function Let: \[ y = \tan^{-1} \left( \frac{\sqrt{1 + a^2 x^2} - 1}{ax} \right) \] ### Step 2: Use substitution To simplify the differentiation, we can use the substitution \( ax = \tan(\theta) \). Thus, we have: \[ x = \frac{\tan(\theta)}{a} \] ### Step 3: Substitute in the equation Now substituting \( ax \) in the equation: \[ y = \tan^{-1} \left( \frac{\sqrt{1 + \tan^2(\theta)} - 1}{\tan(\theta)} \right) \] Using the identity \( \sqrt{1 + \tan^2(\theta)} = \sec(\theta) \), we can rewrite: \[ y = \tan^{-1} \left( \frac{\sec(\theta) - 1}{\tan(\theta)} \right) \] ### Step 4: Simplify the expression Now we can express \( \sec(\theta) \) and \( \tan(\theta) \) in terms of sine and cosine: \[ y = \tan^{-1} \left( \frac{\frac{1}{\cos(\theta)} - 1}{\frac{\sin(\theta)}{\cos(\theta)}} \right) = \tan^{-1} \left( \frac{1 - \cos(\theta)}{\sin(\theta)} \right) \] ### Step 5: Use half-angle identity Using the half-angle identity, we can express \( 1 - \cos(\theta) \) as: \[ 1 - \cos(\theta) = 2 \sin^2\left(\frac{\theta}{2}\right) \] Thus, \[ y = \tan^{-1} \left( \frac{2 \sin^2\left(\frac{\theta}{2}\right)}{\sin(\theta)} \right) \] ### Step 6: Further simplification Using the identity \( \sin(\theta) = 2 \sin\left(\frac{\theta}{2}\right) \cos\left(\frac{\theta}{2}\right) \): \[ y = \tan^{-1} \left( \frac{2 \sin^2\left(\frac{\theta}{2}\right)}{2 \sin\left(\frac{\theta}{2}\right) \cos\left(\frac{\theta}{2}\right)} \right) = \tan^{-1} \left( \frac{\sin\left(\frac{\theta}{2}\right)}{\cos\left(\frac{\theta}{2}\right)} \right) = \tan^{-1}(\tan\left(\frac{\theta}{2}\right)) \] ### Step 7: Final expression for \( y \) Thus, we have: \[ y = \frac{\theta}{2} \] Since \( \theta = \tan^{-1}(ax) \), we can write: \[ y = \frac{1}{2} \tan^{-1}(ax) \] ### Step 8: Differentiate \( y \) with respect to \( x \) Now we differentiate: \[ \frac{dy}{dx} = \frac{1}{2} \cdot \frac{d}{dx} \left( \tan^{-1}(ax) \right) \] Using the derivative of \( \tan^{-1}(u) \): \[ \frac{d}{dx} \left( \tan^{-1}(u) \right) = \frac{1}{1 + u^2} \cdot \frac{du}{dx} \] where \( u = ax \), thus \( \frac{du}{dx} = a \): \[ \frac{dy}{dx} = \frac{1}{2} \cdot \frac{1}{1 + (ax)^2} \cdot a = \frac{a}{2(1 + a^2 x^2)} \] ### Final Answer The derivative of the given function with respect to \( x \) is: \[ \frac{dy}{dx} = \frac{a}{2(1 + a^2 x^2)} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(e) (LONG ANSWER TYPE QUESTIONS (II))|5 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(f) (SHORT ANSWER TYPE QUESTIONS)|27 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(e) (SHORT ANSWER TYPE QUESTIONS)|23 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

Differentiate the following w.r.t. x : (tan^(-1)x)^(2)

Differentiate the following w.r.t. x : (tan^(-1)x)^(x)

Differentiate the following w.r.t. x : cos^(-1)(sinx)

Differentiate the following w.r.t. x : cot^(-1)(sqrt(1+x^(2))-x) .

Differentiate the following w.r.t. x : xsec^(-1)x .

Differentiate the following w.r.t. x : sin^(-1)(sqrt((1+x^(2))/2)) .

Differentiate the following w.r.t. x : (1/2)^(x)

Differentiate the following w.r.t. x: |2x - 1|

Differentiate the following w.r.t. x : cot^(-1)((sqrt(1+x^(2))-1)/(x)),xne0

Differentiate the following w.r.t. x : x^(x^(2))

MODERN PUBLICATION-CONTINUITY AND DIFFERENTIABILITY-EXERCISE 5(e) (LONG ANSWER TYPE QUESTIONS (I))
  1. Differentiate tan^(-1){(sqrt(1+x^(2))-1)/(x)} w.r.t. x.

    Text Solution

    |

  2. tan^(-1)((sqrt(1+x^(2))+1)/(x))

    Text Solution

    |

  3. Differentiate the following w.r.t. x : tan^(-1)((sqrt(1+a^(2)x^(2))-...

    Text Solution

    |

  4. Differentiate the following w.r.t. x : cot^(-1)((sqrt(1+x^(2))-1)/(x...

    Text Solution

    |

  5. Differentiate the following w.r.t. x : cot^(-1)((1+x)/(1-x))

    Text Solution

    |

  6. Differentiate the following w.r.t. x : cot^(-1)(sqrt(1+x^(2))-x).

    Text Solution

    |

  7. Differentiate the following w.r.t. x : tan^(-1)(secx+tanx).

    Text Solution

    |

  8. Differentiate the following w.r.t. x : tan^(-1)sqrt((1-cosx)/(1+cosx...

    Text Solution

    |

  9. Differentiate w.r.t. x: (i)tan^(-1){sqrt((1+cosx)/(1-cosx))}" "(...

    Text Solution

    |

  10. Differentiate the following w.r.t. x : tan^(-1)sqrt((1+sinx)/(1-sinx...

    Text Solution

    |

  11. Differentiate the following w.r.t. x : sin^(-1)(sqrt((1+x^(2))/2)).

    Text Solution

    |

  12. If y=tan^(-1)((2y)/(1-x^2))+sec^(-1)((1+x^2)/(1-x^2)) , x >0 , prove t...

    Text Solution

    |

  13. Find (dy)/(dx) of y=cot^(-1)[(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)...

    Text Solution

    |

  14. Find (dy)/(dx) of y=cot^(-1)[(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)...

    Text Solution

    |

  15. If y="tan"^(-1)((sqrt(1+sinx)+sqrt(1-sinx)))/((sqrt(1+sinx)-sqrt(1-sin...

    Text Solution

    |

  16. (d)/(dx)[cos^(-1)sqrt(((1+x))/(2))]

    Text Solution

    |

  17. If y=tan^(-1){(sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))} , -...

    Text Solution

    |

  18. If y="tan"^(-1)(sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(...

    Text Solution

    |

  19. If y=sin[2t a n^(-1){sqrt((1-x)/(1+x))}],"f i n d"(dy)/(dx)

    Text Solution

    |

  20. If y= tan ^(-1) ((5ax )/( a^(2) - 6x^(2))),then (dy)/(dx) =

    Text Solution

    |