Home
Class 12
MATHS
Differentiate the following w.r.t. x : ...

Differentiate the following w.r.t. x :
`cot^(-1)((1+x)/(1-x))`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \cot^{-1}\left(\frac{1+x}{1-x}\right) \) with respect to \( x \), we can use the chain rule and the quotient rule of differentiation. Here’s a step-by-step solution: ### Step 1: Define the function Let: \[ y = \cot^{-1}(u) \] where \[ u = \frac{1+x}{1-x} \] ### Step 2: Differentiate \( y \) with respect to \( u \) Using the derivative of the inverse cotangent function: \[ \frac{dy}{du} = -\frac{1}{1 + u^2} \] ### Step 3: Differentiate \( u \) with respect to \( x \) Using the quotient rule, where \( u = \frac{a}{b} \) with \( a = 1+x \) and \( b = 1-x \): \[ \frac{du}{dx} = \frac{b \frac{da}{dx} - a \frac{db}{dx}}{b^2} \] Calculating \( \frac{da}{dx} \) and \( \frac{db}{dx} \): - \( \frac{da}{dx} = 1 \) - \( \frac{db}{dx} = -1 \) Now substituting into the quotient rule: \[ \frac{du}{dx} = \frac{(1-x)(1) - (1+x)(-1)}{(1-x)^2} = \frac{(1-x) + (1+x)}{(1-x)^2} = \frac{2}{(1-x)^2} \] ### Step 4: Apply the chain rule Now we can use the chain rule to find \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = -\frac{1}{1 + u^2} \cdot \frac{2}{(1-x)^2} \] ### Step 5: Substitute \( u \) back into the equation Now we need to express \( 1 + u^2 \): \[ u = \frac{1+x}{1-x} \implies u^2 = \left(\frac{1+x}{1-x}\right)^2 = \frac{(1+x)^2}{(1-x)^2} \] Thus, \[ 1 + u^2 = 1 + \frac{(1+x)^2}{(1-x)^2} = \frac{(1-x)^2 + (1+x)^2}{(1-x)^2} \] Calculating the numerator: \[ (1-x)^2 + (1+x)^2 = (1 - 2x + x^2) + (1 + 2x + x^2) = 2 + 2x^2 \] So, \[ 1 + u^2 = \frac{2 + 2x^2}{(1-x)^2} = \frac{2(1+x^2)}{(1-x)^2} \] ### Step 6: Substitute back into \( \frac{dy}{dx} \) Now substituting this back into our expression for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = -\frac{1}{\frac{2(1+x^2)}{(1-x)^2}} \cdot \frac{2}{(1-x)^2} = -\frac{(1-x)^2}{1+x^2} \] ### Final Result Thus, the derivative of \( y \) with respect to \( x \) is: \[ \frac{dy}{dx} = -\frac{(1-x)^2}{1+x^2} \] ---
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(e) (LONG ANSWER TYPE QUESTIONS (II))|5 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(f) (SHORT ANSWER TYPE QUESTIONS)|27 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(e) (SHORT ANSWER TYPE QUESTIONS)|23 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

Differentiate the following w.r.t. x : cos(x^(x))

Differentiate the following w.r.t. x : (cot^(-1)x)^(2)

Differentiate the following w.r.t. x : cos^(-1)(sinx)

Differentiate the following w.r.t. x : cos^(-1)(x/(x+1))

Differentiate the following w.r.t. x: sec^(-1)((1)/(1-2x^(2)))

Differentiate the following w.r.t. x : e^(x)/x

Differentiate the following w.r.t. x : cos^(-1)((2x)/(1+x^(2))),-1ltxlt1

Differentiate the following w.r.t. x : tan^(-1)((2x)/(1-x^(2))),0ltxlt1

Differentiate the following w.r.t. x : e^(-x)

Differentiate the following w.r.t. x : xsec^(-1)x .

MODERN PUBLICATION-CONTINUITY AND DIFFERENTIABILITY-EXERCISE 5(e) (LONG ANSWER TYPE QUESTIONS (I))
  1. Differentiate the following w.r.t. x : tan^(-1)((sqrt(1+a^(2)x^(2))-...

    Text Solution

    |

  2. Differentiate the following w.r.t. x : cot^(-1)((sqrt(1+x^(2))-1)/(x...

    Text Solution

    |

  3. Differentiate the following w.r.t. x : cot^(-1)((1+x)/(1-x))

    Text Solution

    |

  4. Differentiate the following w.r.t. x : cot^(-1)(sqrt(1+x^(2))-x).

    Text Solution

    |

  5. Differentiate the following w.r.t. x : tan^(-1)(secx+tanx).

    Text Solution

    |

  6. Differentiate the following w.r.t. x : tan^(-1)sqrt((1-cosx)/(1+cosx...

    Text Solution

    |

  7. Differentiate w.r.t. x: (i)tan^(-1){sqrt((1+cosx)/(1-cosx))}" "(...

    Text Solution

    |

  8. Differentiate the following w.r.t. x : tan^(-1)sqrt((1+sinx)/(1-sinx...

    Text Solution

    |

  9. Differentiate the following w.r.t. x : sin^(-1)(sqrt((1+x^(2))/2)).

    Text Solution

    |

  10. If y=tan^(-1)((2y)/(1-x^2))+sec^(-1)((1+x^2)/(1-x^2)) , x >0 , prove t...

    Text Solution

    |

  11. Find (dy)/(dx) of y=cot^(-1)[(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)...

    Text Solution

    |

  12. Find (dy)/(dx) of y=cot^(-1)[(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)...

    Text Solution

    |

  13. If y="tan"^(-1)((sqrt(1+sinx)+sqrt(1-sinx)))/((sqrt(1+sinx)-sqrt(1-sin...

    Text Solution

    |

  14. (d)/(dx)[cos^(-1)sqrt(((1+x))/(2))]

    Text Solution

    |

  15. If y=tan^(-1){(sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))} , -...

    Text Solution

    |

  16. If y="tan"^(-1)(sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(...

    Text Solution

    |

  17. If y=sin[2t a n^(-1){sqrt((1-x)/(1+x))}],"f i n d"(dy)/(dx)

    Text Solution

    |

  18. If y= tan ^(-1) ((5ax )/( a^(2) - 6x^(2))),then (dy)/(dx) =

    Text Solution

    |

  19. Find (dy)/(dx) if y=tan^(-1)(4x)/(1+5x^2)+tan^(-1)(2+3x)/(3-2x)

    Text Solution

    |

  20. If y=cos^(-1)((3x+4\ sqrt(1-x^2))/5),\ "f i n d"(dy)/(dx)

    Text Solution

    |