Home
Class 12
MATHS
Differentiate the following w.r.t. x : ...

Differentiate the following w.r.t. x :
`tan^(-1)(secx+tanx)`.

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \tan^{-1}(\sec x + \tan x) \) with respect to \( x \), we will follow these steps: ### Step 1: Identify the function to differentiate We have: \[ y = \tan^{-1}(\sec x + \tan x) \] ### Step 2: Use the chain rule To differentiate \( y \) with respect to \( x \), we apply the chain rule. The derivative of \( \tan^{-1}(u) \) is given by: \[ \frac{dy}{dx} = \frac{1}{1 + u^2} \cdot \frac{du}{dx} \] where \( u = \sec x + \tan x \). ### Step 3: Differentiate \( u = \sec x + \tan x \) Now, we need to find \( \frac{du}{dx} \): \[ \frac{du}{dx} = \frac{d}{dx}(\sec x) + \frac{d}{dx}(\tan x) \] Using the derivatives: \[ \frac{d}{dx}(\sec x) = \sec x \tan x \quad \text{and} \quad \frac{d}{dx}(\tan x) = \sec^2 x \] Thus, \[ \frac{du}{dx} = \sec x \tan x + \sec^2 x \] ### Step 4: Substitute \( u \) and \( \frac{du}{dx} \) into the chain rule formula Now we substitute \( u \) and \( \frac{du}{dx} \) back into the derivative formula: \[ \frac{dy}{dx} = \frac{1}{1 + (\sec x + \tan x)^2} \cdot (\sec x \tan x + \sec^2 x) \] ### Step 5: Simplify \( 1 + (\sec x + \tan x)^2 \) Next, we need to simplify \( 1 + (\sec x + \tan x)^2 \): \[ (\sec x + \tan x)^2 = \sec^2 x + 2\sec x \tan x + \tan^2 x \] Using the identity \( \sec^2 x = 1 + \tan^2 x \), we have: \[ 1 + (\sec x + \tan x)^2 = 1 + \sec^2 x + 2\sec x \tan x + \tan^2 x = 2 + 2\sec x \tan x \] ### Step 6: Final expression for \( \frac{dy}{dx} \) Now substituting this back, we get: \[ \frac{dy}{dx} = \frac{\sec x \tan x + \sec^2 x}{2 + 2\sec x \tan x} \] This can be simplified further: \[ \frac{dy}{dx} = \frac{\sec x (\tan x + \sec x)}{2(1 + \sec x \tan x)} \] ### Final Answer Thus, the derivative of \( y = \tan^{-1}(\sec x + \tan x) \) with respect to \( x \) is: \[ \frac{dy}{dx} = \frac{\sec x (\tan x + \sec x)}{2(1 + \sec x \tan x)} \] ---
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(e) (LONG ANSWER TYPE QUESTIONS (II))|5 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(f) (SHORT ANSWER TYPE QUESTIONS)|27 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(e) (SHORT ANSWER TYPE QUESTIONS)|23 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

Differentiate the following w.r.t. x : (tan^(-1)x)^(x)

Differentiate the following w.r.t. x : (tan^(-1)x)^(2)

Differentiate the following w.r.t. x : e^(x)/x

Differentiate the following w.r.t. x : e^(-x)

Differentiate the following w.r.t. x : (sinx)^(x)

Differentiate the following w.r.t. x : cos^(-1)(sinx)

Differentiate the following w.r.t.x : sin(x^2)

Differentiate the following w.r.t. x : xsec^(-1)x .

Differentiate the following w.r.t. x : (x^(x))^(x)

Differentiate the following w.r.t. x : cos(x^(x))

MODERN PUBLICATION-CONTINUITY AND DIFFERENTIABILITY-EXERCISE 5(e) (LONG ANSWER TYPE QUESTIONS (I))
  1. Differentiate the following w.r.t. x : tan^(-1)((sqrt(1+a^(2)x^(2))-...

    Text Solution

    |

  2. Differentiate the following w.r.t. x : cot^(-1)((sqrt(1+x^(2))-1)/(x...

    Text Solution

    |

  3. Differentiate the following w.r.t. x : cot^(-1)((1+x)/(1-x))

    Text Solution

    |

  4. Differentiate the following w.r.t. x : cot^(-1)(sqrt(1+x^(2))-x).

    Text Solution

    |

  5. Differentiate the following w.r.t. x : tan^(-1)(secx+tanx).

    Text Solution

    |

  6. Differentiate the following w.r.t. x : tan^(-1)sqrt((1-cosx)/(1+cosx...

    Text Solution

    |

  7. Differentiate w.r.t. x: (i)tan^(-1){sqrt((1+cosx)/(1-cosx))}" "(...

    Text Solution

    |

  8. Differentiate the following w.r.t. x : tan^(-1)sqrt((1+sinx)/(1-sinx...

    Text Solution

    |

  9. Differentiate the following w.r.t. x : sin^(-1)(sqrt((1+x^(2))/2)).

    Text Solution

    |

  10. If y=tan^(-1)((2y)/(1-x^2))+sec^(-1)((1+x^2)/(1-x^2)) , x >0 , prove t...

    Text Solution

    |

  11. Find (dy)/(dx) of y=cot^(-1)[(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)...

    Text Solution

    |

  12. Find (dy)/(dx) of y=cot^(-1)[(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)...

    Text Solution

    |

  13. If y="tan"^(-1)((sqrt(1+sinx)+sqrt(1-sinx)))/((sqrt(1+sinx)-sqrt(1-sin...

    Text Solution

    |

  14. (d)/(dx)[cos^(-1)sqrt(((1+x))/(2))]

    Text Solution

    |

  15. If y=tan^(-1){(sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))} , -...

    Text Solution

    |

  16. If y="tan"^(-1)(sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(...

    Text Solution

    |

  17. If y=sin[2t a n^(-1){sqrt((1-x)/(1+x))}],"f i n d"(dy)/(dx)

    Text Solution

    |

  18. If y= tan ^(-1) ((5ax )/( a^(2) - 6x^(2))),then (dy)/(dx) =

    Text Solution

    |

  19. Find (dy)/(dx) if y=tan^(-1)(4x)/(1+5x^2)+tan^(-1)(2+3x)/(3-2x)

    Text Solution

    |

  20. If y=cos^(-1)((3x+4\ sqrt(1-x^2))/5),\ "f i n d"(dy)/(dx)

    Text Solution

    |