Home
Class 12
MATHS
Differentiate the following w.r.t. x : ...

Differentiate the following w.r.t. x :
`tan^(-1)sqrt((1+sinx)/(1-sinx))`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \tan^{-1}\left(\sqrt{\frac{1 + \sin x}{1 - \sin x}}\right) \) with respect to \( x \), we can follow these steps: ### Step 1: Rewrite the function We start with the function: \[ y = \tan^{-1}\left(\sqrt{\frac{1 + \sin x}{1 - \sin x}}\right) \] ### Step 2: Use the chain rule To differentiate \( y \) with respect to \( x \), we will use the chain rule. The derivative of \( \tan^{-1}(u) \) is given by: \[ \frac{d}{dx} \tan^{-1}(u) = \frac{1}{1 + u^2} \cdot \frac{du}{dx} \] where \( u = \sqrt{\frac{1 + \sin x}{1 - \sin x}} \). ### Step 3: Differentiate \( u \) Now we need to differentiate \( u \): \[ u = \sqrt{\frac{1 + \sin x}{1 - \sin x}} \] Using the quotient rule, we have: \[ \frac{du}{dx} = \frac{1}{2\sqrt{\frac{1 + \sin x}{1 - \sin x}}} \cdot \frac{d}{dx}\left(\frac{1 + \sin x}{1 - \sin x}\right) \] ### Step 4: Differentiate the quotient Using the quotient rule for \( \frac{1 + \sin x}{1 - \sin x} \): \[ \frac{d}{dx}\left(\frac{1 + \sin x}{1 - \sin x}\right) = \frac{(1 - \sin x)(\cos x) - (1 + \sin x)(-\cos x)}{(1 - \sin x)^2} \] This simplifies to: \[ \frac{\cos x(1 - \sin x + 1 + \sin x)}{(1 - \sin x)^2} = \frac{2\cos x}{(1 - \sin x)^2} \] ### Step 5: Substitute back into \( \frac{du}{dx} \) Now substituting back: \[ \frac{du}{dx} = \frac{1}{2\sqrt{\frac{1 + \sin x}{1 - \sin x}}} \cdot \frac{2\cos x}{(1 - \sin x)^2} = \frac{\cos x}{\sqrt{\frac{1 + \sin x}{1 - \sin x}}(1 - \sin x)^2} \] ### Step 6: Substitute \( u \) back into the derivative of \( y \) Now substituting \( u \) back into the derivative of \( y \): \[ \frac{dy}{dx} = \frac{1}{1 + \left(\sqrt{\frac{1 + \sin x}{1 - \sin x}}\right)^2} \cdot \frac{\cos x}{\sqrt{\frac{1 + \sin x}{1 - \sin x}}(1 - \sin x)^2} \] ### Step 7: Simplify the expression Now simplify \( 1 + \left(\sqrt{\frac{1 + \sin x}{1 - \sin x}}\right)^2 \): \[ 1 + \frac{1 + \sin x}{1 - \sin x} = \frac{(1 - \sin x) + (1 + \sin x)}{1 - \sin x} = \frac{2}{1 - \sin x} \] Thus, we have: \[ \frac{dy}{dx} = \frac{1 - \sin x}{2} \cdot \frac{\cos x}{\sqrt{\frac{1 + \sin x}{1 - \sin x}}(1 - \sin x)^2} \] ### Final Result Combining everything, we get: \[ \frac{dy}{dx} = \frac{\cos x}{2(1 - \sin x) \sqrt{\frac{1 + \sin x}{1 - \sin x}}} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(e) (LONG ANSWER TYPE QUESTIONS (II))|5 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(f) (SHORT ANSWER TYPE QUESTIONS)|27 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(e) (SHORT ANSWER TYPE QUESTIONS)|23 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

Differentiate the following w.r.t. x : tan^(-1)sqrt((1-cosx)/(1+cosx))

Differentiate the following w.r.t. x : (tan^(-1)x)^(x)

Differentiate the following w.r.t. x : (tan^(-1)x)^(2)

Differentiate the following w.r.t. x : (sinx)^(x)

Differentiate the following w.r.t. x : e^(x)/sinx

Differentiate the following w.r.t. x : xsec^(-1)x .

Differentiate the following w.r.t. x : cos^(-1)(sinx)

Differentiate the following w.r.t. x : e^(x)sinx

Differentiate the following w.r.t. x: |2x - 1|

Differentiate the following w.r.t. x : (1/2)^(x)

MODERN PUBLICATION-CONTINUITY AND DIFFERENTIABILITY-EXERCISE 5(e) (LONG ANSWER TYPE QUESTIONS (I))
  1. Differentiate the following w.r.t. x : tan^(-1)((sqrt(1+a^(2)x^(2))-...

    Text Solution

    |

  2. Differentiate the following w.r.t. x : cot^(-1)((sqrt(1+x^(2))-1)/(x...

    Text Solution

    |

  3. Differentiate the following w.r.t. x : cot^(-1)((1+x)/(1-x))

    Text Solution

    |

  4. Differentiate the following w.r.t. x : cot^(-1)(sqrt(1+x^(2))-x).

    Text Solution

    |

  5. Differentiate the following w.r.t. x : tan^(-1)(secx+tanx).

    Text Solution

    |

  6. Differentiate the following w.r.t. x : tan^(-1)sqrt((1-cosx)/(1+cosx...

    Text Solution

    |

  7. Differentiate w.r.t. x: (i)tan^(-1){sqrt((1+cosx)/(1-cosx))}" "(...

    Text Solution

    |

  8. Differentiate the following w.r.t. x : tan^(-1)sqrt((1+sinx)/(1-sinx...

    Text Solution

    |

  9. Differentiate the following w.r.t. x : sin^(-1)(sqrt((1+x^(2))/2)).

    Text Solution

    |

  10. If y=tan^(-1)((2y)/(1-x^2))+sec^(-1)((1+x^2)/(1-x^2)) , x >0 , prove t...

    Text Solution

    |

  11. Find (dy)/(dx) of y=cot^(-1)[(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)...

    Text Solution

    |

  12. Find (dy)/(dx) of y=cot^(-1)[(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)...

    Text Solution

    |

  13. If y="tan"^(-1)((sqrt(1+sinx)+sqrt(1-sinx)))/((sqrt(1+sinx)-sqrt(1-sin...

    Text Solution

    |

  14. (d)/(dx)[cos^(-1)sqrt(((1+x))/(2))]

    Text Solution

    |

  15. If y=tan^(-1){(sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))} , -...

    Text Solution

    |

  16. If y="tan"^(-1)(sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(...

    Text Solution

    |

  17. If y=sin[2t a n^(-1){sqrt((1-x)/(1+x))}],"f i n d"(dy)/(dx)

    Text Solution

    |

  18. If y= tan ^(-1) ((5ax )/( a^(2) - 6x^(2))),then (dy)/(dx) =

    Text Solution

    |

  19. Find (dy)/(dx) if y=tan^(-1)(4x)/(1+5x^2)+tan^(-1)(2+3x)/(3-2x)

    Text Solution

    |

  20. If y=cos^(-1)((3x+4\ sqrt(1-x^2))/5),\ "f i n d"(dy)/(dx)

    Text Solution

    |