Home
Class 12
MATHS
Differentiate the following w.r.t. x : ...

Differentiate the following w.r.t. x :
`tan^(-1)((e^(2x)+1)/(e^(2x)-1))`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \tan^{-1}\left(\frac{e^{2x}+1}{e^{2x}-1}\right) \) with respect to \( x \), we will follow these steps: ### Step 1: Differentiate using the chain rule We start by applying the chain rule for differentiation. The derivative of \( \tan^{-1}(u) \) is given by: \[ \frac{dy}{dx} = \frac{1}{1 + u^2} \cdot \frac{du}{dx} \] where \( u = \frac{e^{2x} + 1}{e^{2x} - 1} \). ### Step 2: Differentiate \( u \) Next, we need to find \( \frac{du}{dx} \). To differentiate \( u \), we will use the quotient rule: \[ u = \frac{f(x)}{g(x)} \quad \text{where } f(x) = e^{2x} + 1 \text{ and } g(x) = e^{2x} - 1 \] The quotient rule states: \[ \frac{du}{dx} = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2} \] Calculating \( f'(x) \) and \( g'(x) \): \[ f'(x) = 2e^{2x}, \quad g'(x) = 2e^{2x} \] Now substituting into the quotient rule: \[ \frac{du}{dx} = \frac{(2e^{2x})(e^{2x} - 1) - (e^{2x} + 1)(2e^{2x})}{(e^{2x} - 1)^2} \] Simplifying the numerator: \[ = \frac{2e^{4x} - 2e^{2x} - 2e^{4x} - 2e^{2x}}{(e^{2x} - 1)^2} = \frac{-4e^{2x}}{(e^{2x} - 1)^2} \] ### Step 3: Substitute back into the derivative Now we substitute \( u \) and \( \frac{du}{dx} \) back into the derivative: \[ \frac{dy}{dx} = \frac{1}{1 + \left(\frac{e^{2x} + 1}{e^{2x} - 1}\right)^2} \cdot \frac{-4e^{2x}}{(e^{2x} - 1)^2} \] ### Step 4: Simplify the expression Now we need to simplify \( 1 + \left(\frac{e^{2x} + 1}{e^{2x} - 1}\right)^2 \): \[ 1 + \left(\frac{e^{2x} + 1}{e^{2x} - 1}\right)^2 = \frac{(e^{2x} - 1)^2 + (e^{2x} + 1)^2}{(e^{2x} - 1)^2} \] Calculating the numerator: \[ (e^{2x} - 1)^2 + (e^{2x} + 1)^2 = (e^{4x} - 2e^{2x} + 1) + (e^{4x} + 2e^{2x} + 1) = 2e^{4x} + 2 = 2(e^{4x} + 1) \] Thus, \[ 1 + \left(\frac{e^{2x} + 1}{e^{2x} - 1}\right)^2 = \frac{2(e^{4x} + 1)}{(e^{2x} - 1)^2} \] ### Step 5: Final expression for the derivative Substituting this back into our derivative: \[ \frac{dy}{dx} = \frac{-4e^{2x}}{\frac{2(e^{4x} + 1)}{(e^{2x} - 1)^2}} = \frac{-4e^{2x}(e^{2x} - 1)^2}{2(e^{4x} + 1)} = \frac{-2e^{2x}(e^{2x} - 1)^2}{e^{4x} + 1} \] ### Final Result Thus, the derivative of \( y \) with respect to \( x \) is: \[ \frac{dy}{dx} = \frac{-2e^{2x}(e^{2x} - 1)^2}{e^{4x} + 1} \] ---
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(f) (LONG ANSWER TYPE QUESTIONS (II))|13 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(g) (SHORT ANSWER TYPE QUESTIONS)|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(f) (SHORT ANSWER TYPE QUESTIONS)|27 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

Differentiate the following w.r.t. x : (tan^(-1)x)^(2)

Differentiate the following w.r.t. x : (tan^(-1)x)^(x)

Differentiate the following w.r.t. x : cos(tan^(-1)e^(-x))

Differentiate the following w.r.t. x : e^(x)/x

Differentiate the following w.r.t. x : e^(-x)

Differentiate the following w.r.t. x : sin^(-1)(1-2x^(2))

Differentiate the following w.r.t. x : x^(-1//3)e^(x)

Differentiate the following w.r.t. x : e^(sin^(-1)x)

Differentiate the following w.r.t. x : e^(sin^(-1)x)

Differentiate the following w.r.t. x : e^(cot^(-1)x^(2))

MODERN PUBLICATION-CONTINUITY AND DIFFERENTIABILITY-EXERCISE 5(f) (LONG ANSWER TYPE QUESTIONS (I))
  1. Differentiate the following w.r.t. x : e^(-3x)sin^(2)3x

    Text Solution

    |

  2. Differentiate the following w.r.t. x : e^(-x^(2))sin(logx)

    Text Solution

    |

  3. Differentiate the following w.r.t. x : tan^(-1)((e^(2x)+1)/(e^(2x)-1...

    Text Solution

    |

  4. Differentiate the following w.r.t. x : log((x+3)+sqrt(x^(2)+6x+3))

    Text Solution

    |

  5. Differentiate the following w.r.t.x. log(x+sqrt(a^(2)+x^(2)))

    Text Solution

    |

  6. Differentiate the following w.r.t. x : xsqrt(x^(2)+1)+log(x+sqrt(x^(...

    Text Solution

    |

  7. Differentiate the following w.r.t. x : sqrt(x^(2)+1)-log(1/x+sqrt(1+...

    Text Solution

    |

  8. Differentiate the following w.r.t. x : (e^(x)(x-1))/((x^(2)+1))

    Text Solution

    |

  9. Differentiate the following w.r.t. x : e^(ax)/(sin(bx+c))

    Text Solution

    |

  10. Differentiate the following w.r.t. x : 1/3e^(x)-5e

    Text Solution

    |

  11. Differentiate the following w.r.t. x : e^(x)+2cosx

    Text Solution

    |

  12. Differentiate the following w.r.t. x : x^(2)e^(x)sinx

    Text Solution

    |

  13. Differentiate the following w.r.t. x : e^(sec^(2)x)+3cos^(-1)x.

    Text Solution

    |

  14. Differentiate the following w.r.t. x : log(sinsqrt(1+x^(2)))

    Text Solution

    |

  15. Differentiate the following w.r.t. x : sin(logx),xgt0

    Text Solution

    |

  16. Differentiate the following w.r.t. x : log(cos5x)

    Text Solution

    |

  17. Differentiate the following w.r.t. x : cot(logx+e^(sqrtx))

    Text Solution

    |

  18. Differentiate the following w.r.t. x : 2l(n)((x-1)/(x+1))

    Text Solution

    |

  19. Differentiate the following w.r.t. x : x^(2)l(n)(sqrt((x^(2)+9)/(x^(...

    Text Solution

    |

  20. Differentiate the following w.r.t. x : ln(secx+tanx)

    Text Solution

    |