Home
Class 12
MATHS
Prove that : d/dx[log((x^(2)+x+1)/(x^(...

Prove that :
`d/dx[log((x^(2)+x+1)/(x^(2)-x+1))+2/sqrt3tan^(-1)((xsqrt3)/(1-x^(2)))]=4/(1+x^(2)+x^(4))`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(g) (SHORT ANSWER TYPE QUESTIONS)|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(g) (LONG ANSWER TYPE QUESTIONS (I))|10 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(f) (LONG ANSWER TYPE QUESTIONS (I))|33 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

(d)/(dx)[log((e^(4x))/(1+e^(4x)))]

Differentiate log((x^(2)+x+1)/(x^(2)-x+1)) with respect to x:

(d)/(dx)[(tan^(-1)(log((e)/(x^(2)))))/(log(ex^(2)))]=

Prove that (d)/(dx){2x tan^(-1)x-log (1+x^(2))}=2 tan^(-1)x.

(d)/(dx)[log((x)/(e^(tan x)))]=

Differentiate log((x+sqrt(x^(2)-1))/(x-sqrt(x^(2)-1)))

Show that (d)/(dx)int_(x^(2))^(x^(2))(1)/(log t)dt=(1)/(log x)(x^(2)-x)

" 1."(d)/(dx){log(x+sqrt(x^(2)+1))}=

(d)/(dx)[a tan^(-1)x+b log((x-1)/(x+1))]=(1)/(x^(4)-1)rArr a-2b=