Home
Class 12
MATHS
Differentiate the following w.r.t. x : ...

Differentiate the following w.r.t. x :
`x^(2)l_(n)(sqrt((x^(2)+9)/(x^(2)+4)))`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = x^2 \ln\left(\sqrt{\frac{x^2 + 9}{x^2 + 4}}\right) \) with respect to \( x \), we will follow these steps: ### Step 1: Rewrite the function We can simplify the logarithmic expression: \[ y = x^2 \ln\left(\left(\frac{x^2 + 9}{x^2 + 4}\right)^{1/2}\right) = \frac{1}{2} x^2 \ln\left(\frac{x^2 + 9}{x^2 + 4}\right) \] ### Step 2: Differentiate using the product rule Now, we will differentiate \( y \) using the product rule. Let \( u = \frac{1}{2} x^2 \) and \( v = \ln\left(\frac{x^2 + 9}{x^2 + 4}\right) \). The product rule states that: \[ \frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx} \] ### Step 3: Calculate \( \frac{du}{dx} \) Differentiating \( u \): \[ \frac{du}{dx} = \frac{d}{dx}\left(\frac{1}{2} x^2\right) = x \] ### Step 4: Calculate \( \frac{dv}{dx} \) Now we differentiate \( v \): \[ v = \ln\left(\frac{x^2 + 9}{x^2 + 4}\right) \] Using the chain rule and quotient rule: \[ \frac{dv}{dx} = \frac{1}{\frac{x^2 + 9}{x^2 + 4}} \cdot \frac{d}{dx}\left(\frac{x^2 + 9}{x^2 + 4}\right) \] Using the quotient rule: \[ \frac{d}{dx}\left(\frac{x^2 + 9}{x^2 + 4}\right) = \frac{(x^2 + 4)(2x) - (x^2 + 9)(2x)}{(x^2 + 4)^2} = \frac{2x[(x^2 + 4) - (x^2 + 9)]}{(x^2 + 4)^2} = \frac{2x(-5)}{(x^2 + 4)^2} = \frac{-10x}{(x^2 + 4)^2} \] Thus, \[ \frac{dv}{dx} = \frac{(x^2 + 4)}{(x^2 + 9)} \cdot \frac{-10x}{(x^2 + 4)^2} = \frac{-10x}{(x^2 + 9)(x^2 + 4)} \] ### Step 5: Substitute back into the product rule Now substituting \( u \), \( v \), \( \frac{du}{dx} \), and \( \frac{dv}{dx} \) into the product rule: \[ \frac{dy}{dx} = \frac{1}{2} x^2 \cdot \frac{-10x}{(x^2 + 9)(x^2 + 4)} + \ln\left(\frac{x^2 + 9}{x^2 + 4}\right) \cdot x \] This simplifies to: \[ \frac{dy}{dx} = \frac{-5x^3}{(x^2 + 9)(x^2 + 4)} + x \ln\left(\frac{x^2 + 9}{x^2 + 4}\right) \] ### Final Result Thus, the derivative of the function is: \[ \frac{dy}{dx} = \frac{-5x^3}{(x^2 + 9)(x^2 + 4)} + x \ln\left(\frac{x^2 + 9}{x^2 + 4}\right) \] ---
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(f) (LONG ANSWER TYPE QUESTIONS (II))|13 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(g) (SHORT ANSWER TYPE QUESTIONS)|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(f) (SHORT ANSWER TYPE QUESTIONS)|27 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

Differentiate the following w.r.t. x : x^(x^(2))

Differentiate the following w.r.t.x : sin(x^2)

Differentiate the following w.r.t. x : e^(x)/x

Differentiate the following w.r.t. x : e^(-x)

Differentiate the following w.r.t.x : sin(x^(2))

Differentiate the following w.r.t. x: |2x^(2)-3|

Differentiate the following w.r.t. x : e^(x^(3))

Differentiate the following w.r.t. x: 3^(x+2) .

Differentiate the following w.r.t.x. x^(x^2)

Differentiate the following w.r.t. x : x^(2)e^(x)sinx

MODERN PUBLICATION-CONTINUITY AND DIFFERENTIABILITY-EXERCISE 5(f) (LONG ANSWER TYPE QUESTIONS (I))
  1. Differentiate the following w.r.t. x : e^(sec^(2)x)+3cos^(-1)x.

    Text Solution

    |

  2. Differentiate the following w.r.t. x : log(sinsqrt(1+x^(2)))

    Text Solution

    |

  3. Differentiate the following w.r.t. x : sin(logx),xgt0

    Text Solution

    |

  4. Differentiate the following w.r.t. x : log(cos5x)

    Text Solution

    |

  5. Differentiate the following w.r.t. x : cot(logx+e^(sqrtx))

    Text Solution

    |

  6. Differentiate the following w.r.t. x : 2l(n)((x-1)/(x+1))

    Text Solution

    |

  7. Differentiate the following w.r.t. x : x^(2)l(n)(sqrt((x^(2)+9)/(x^(...

    Text Solution

    |

  8. Differentiate the following w.r.t. x : ln(secx+tanx)

    Text Solution

    |

  9. Differentiate the following w.r.t. x : l(n)(sqrt((1-cosx)/(1+cosx)))

    Text Solution

    |

  10. Differentiate the following w.r.t. x : log((1+x)/(1-x))

    Text Solution

    |

  11. Differentiate the following w.r.t. x : logtan(pi/4+x/2)

    Text Solution

    |

  12. Differentiate the following w.r.t. x : log((x+sqrt(x^(2)-a^(2)))/(x-...

    Text Solution

    |

  13. Differentiate the following w.r.t. x : logsin^(-1)(2xsqrt(1-x^(2)))

    Text Solution

    |

  14. Differentiate the following w.r.t. x : sqrt(log(sin(x^(2)/3-1)))

    Text Solution

    |

  15. Find dy/dx when : siny+logy=x^(2)+18x+3

    Text Solution

    |

  16. Find dy/dx when : xy+xe^(-y)+ye^(x)=x^(2).

    Text Solution

    |

  17. if e^(x+y)=x y , show that (dy)/(dx)=(y(1-x))/(x(y-1))

    Text Solution

    |

  18. if y=(sin^(- 1)x)/(sqrt(1-x^2)), prove that (1-x^2)(dy)/(dx)=x y+1

    Text Solution

    |

  19. If x=tan(1/alogy), show that (1+x^(2))dy/dx=ay.

    Text Solution

    |

  20. Differentiate tan^(-1)((2^(x+1))/(1-4^(x))) with respect to x.

    Text Solution

    |