Home
Class 12
MATHS
Differentiate the following w.r.t. x : ...

Differentiate the following w.r.t. x :
`log((x+sqrt(x^(2)-a^(2)))/(x-sqrt(x^(2)-a^(2))))`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \log\left(\frac{x + \sqrt{x^2 - a^2}}{x - \sqrt{x^2 - a^2}}\right) \) with respect to \( x \), we can follow these steps: ### Step 1: Rewrite the function Let: \[ y = \log\left(\frac{x + \sqrt{x^2 - a^2}}{x - \sqrt{x^2 - a^2}}\right) \] ### Step 2: Simplify using logarithmic properties Using the property of logarithms that states \( \log\left(\frac{m}{n}\right) = \log(m) - \log(n) \), we can rewrite \( y \): \[ y = \log(x + \sqrt{x^2 - a^2}) - \log(x - \sqrt{x^2 - a^2}) \] ### Step 3: Differentiate both sides with respect to \( x \) Now, we differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = \frac{d}{dx}\left[\log(x + \sqrt{x^2 - a^2})\right] - \frac{d}{dx}\left[\log(x - \sqrt{x^2 - a^2})\right] \] Using the chain rule, the derivative of \( \log(u) \) is \( \frac{1}{u} \cdot \frac{du}{dx} \): \[ \frac{dy}{dx} = \frac{1}{x + \sqrt{x^2 - a^2}} \cdot \left(1 + \frac{x}{\sqrt{x^2 - a^2}}\right) - \frac{1}{x - \sqrt{x^2 - a^2}} \cdot \left(1 - \frac{x}{\sqrt{x^2 - a^2}}\right) \] ### Step 4: Simplify the derivatives Calculating the derivatives: 1. For \( \log(x + \sqrt{x^2 - a^2}) \): \[ \frac{d}{dx}(x + \sqrt{x^2 - a^2}) = 1 + \frac{x}{\sqrt{x^2 - a^2}} \] 2. For \( \log(x - \sqrt{x^2 - a^2}) \): \[ \frac{d}{dx}(x - \sqrt{x^2 - a^2}) = 1 - \frac{x}{\sqrt{x^2 - a^2}} \] ### Step 5: Combine the results Now we can combine the results: \[ \frac{dy}{dx} = \frac{1 + \frac{x}{\sqrt{x^2 - a^2}}}{x + \sqrt{x^2 - a^2}} - \frac{1 - \frac{x}{\sqrt{x^2 - a^2}}}{x - \sqrt{x^2 - a^2}} \] ### Step 6: Finding a common denominator To simplify this expression, we can find a common denominator: \[ \frac{dy}{dx} = \frac{(1 + \frac{x}{\sqrt{x^2 - a^2}})(x - \sqrt{x^2 - a^2}) - (1 - \frac{x}{\sqrt{x^2 - a^2}})(x + \sqrt{x^2 - a^2})}{(x + \sqrt{x^2 - a^2})(x - \sqrt{x^2 - a^2})} \] ### Step 7: Simplifying the numerator Expanding both terms in the numerator: 1. First term: \[ (1 + \frac{x}{\sqrt{x^2 - a^2}})(x - \sqrt{x^2 - a^2}) = x - \sqrt{x^2 - a^2} + \frac{x^2}{\sqrt{x^2 - a^2}} - \frac{x \cdot (x^2 - a^2)}{\sqrt{x^2 - a^2}} \] 2. Second term: \[ (1 - \frac{x}{\sqrt{x^2 - a^2}})(x + \sqrt{x^2 - a^2}) = x + \sqrt{x^2 - a^2} - \frac{x^2}{\sqrt{x^2 - a^2}} + \frac{x \cdot (x^2 - a^2)}{\sqrt{x^2 - a^2}} \] ### Step 8: Combine and simplify After combining and simplifying, we will find that: \[ \frac{dy}{dx} = \frac{2}{\sqrt{x^2 - a^2}} \] ### Final Result Thus, the derivative of the given function is: \[ \frac{dy}{dx} = \frac{2}{\sqrt{x^2 - a^2}} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(f) (LONG ANSWER TYPE QUESTIONS (II))|13 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(g) (SHORT ANSWER TYPE QUESTIONS)|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(f) (SHORT ANSWER TYPE QUESTIONS)|27 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

Differentiate the following w.r.t. x : log(sinx)

Differentiate the following w.r.t. x: e^(log(x+sqrt(x^(2)+a^(2))))

Differentiate the following w.r.t. x : (1/2)^(x)

Differentiate the following w.r.t. x : log(sinsqrt(1+x^(2)))

Differentiate the following w.r.t. x : cos(x^(x))

Differentiate the following w.r.t. x : log(cose^(x))

Differentiate the following w.r.t. x : log(sine^(x))

Differentiate the following w.r.t. x : e^(x)/x

Differentiate the following w.r.t. x : x^(x^(2))

MODERN PUBLICATION-CONTINUITY AND DIFFERENTIABILITY-EXERCISE 5(f) (LONG ANSWER TYPE QUESTIONS (I))
  1. Differentiate the following w.r.t. x : e^(sec^(2)x)+3cos^(-1)x.

    Text Solution

    |

  2. Differentiate the following w.r.t. x : log(sinsqrt(1+x^(2)))

    Text Solution

    |

  3. Differentiate the following w.r.t. x : sin(logx),xgt0

    Text Solution

    |

  4. Differentiate the following w.r.t. x : log(cos5x)

    Text Solution

    |

  5. Differentiate the following w.r.t. x : cot(logx+e^(sqrtx))

    Text Solution

    |

  6. Differentiate the following w.r.t. x : 2l(n)((x-1)/(x+1))

    Text Solution

    |

  7. Differentiate the following w.r.t. x : x^(2)l(n)(sqrt((x^(2)+9)/(x^(...

    Text Solution

    |

  8. Differentiate the following w.r.t. x : ln(secx+tanx)

    Text Solution

    |

  9. Differentiate the following w.r.t. x : l(n)(sqrt((1-cosx)/(1+cosx)))

    Text Solution

    |

  10. Differentiate the following w.r.t. x : log((1+x)/(1-x))

    Text Solution

    |

  11. Differentiate the following w.r.t. x : logtan(pi/4+x/2)

    Text Solution

    |

  12. Differentiate the following w.r.t. x : log((x+sqrt(x^(2)-a^(2)))/(x-...

    Text Solution

    |

  13. Differentiate the following w.r.t. x : logsin^(-1)(2xsqrt(1-x^(2)))

    Text Solution

    |

  14. Differentiate the following w.r.t. x : sqrt(log(sin(x^(2)/3-1)))

    Text Solution

    |

  15. Find dy/dx when : siny+logy=x^(2)+18x+3

    Text Solution

    |

  16. Find dy/dx when : xy+xe^(-y)+ye^(x)=x^(2).

    Text Solution

    |

  17. if e^(x+y)=x y , show that (dy)/(dx)=(y(1-x))/(x(y-1))

    Text Solution

    |

  18. if y=(sin^(- 1)x)/(sqrt(1-x^2)), prove that (1-x^2)(dy)/(dx)=x y+1

    Text Solution

    |

  19. If x=tan(1/alogy), show that (1+x^(2))dy/dx=ay.

    Text Solution

    |

  20. Differentiate tan^(-1)((2^(x+1))/(1-4^(x))) with respect to x.

    Text Solution

    |