Home
Class 12
MATHS
Prove that : d/dx[(xsin^(-1)x)/(sqrt(1...

Prove that :
`d/dx[(xsin^(-1)x)/(sqrt(1-x^(2)))+logsqrt(1-x^(2))]=(sin^(-1)x)/((1-x^(2))^(3//2))`.

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(g) (SHORT ANSWER TYPE QUESTIONS)|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(g) (LONG ANSWER TYPE QUESTIONS (I))|10 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(f) (LONG ANSWER TYPE QUESTIONS (I))|33 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

Prove that 2sin^(-1)x=sin^(-1)[2x sqrt(1-x^(2))]

(d)/(dx)[sin^(-1)(x sqrt(1-x)-sqrt(x)sqrt(1-x^(2)))] is

If y=(x sin^(-1)x)/(sqrt(1-x^(2)))+log sqrt(1-x^(2)), then prove that (dy)/(dx)=(sin^(-1)x)/((1-x^(2))^((3)/(2)))

Prove that sin^(-1)x=cos^(-1) sqrt(1-x^2)

Prove that: (d)/(dx)[(x)/(2)sqrt(a^(2)-x^(2))+(a^(2))/(2)sin^(-1)((x)/(a))]=sqrt(a^(2)-x^(2))

Prove that: (d)/(dx)[(x)/(2)sqrt(a^(2)-x^(2))+(a^(2))/(2)sin^(-1)((x)/(a))]=sqrt(a^(2)-x^(2))

Prove that (d)/(dx){(x)/(2)sqrt(a^(2)-x^(2))+(a^(2))/(2)(sin^(-1)x)/(a)}=sqrt(a^(2)-x^(2))

Prove that (d)/(dx){(x)/(2)sqrt(a^(2)-x^(2))+(a^(2))/(2)sin^(-1)(x)/(a)}=sqrt(a^(2)-x^(2))

Prove that: sin^(-1){(sqrt(1+x)+sqrt(1-x))/(2)}=(pi)/(4)+(sin^(-1)x)/(2),0

if y=(sin^(-1)x)/(sqrt(1-x^(2))), prove that (1-x^(2))(dy)/(dx)=xy+1