Home
Class 12
MATHS
Find, from first principle, the derivati...

Find, from first principle, the derivative of the following w.r.t. x :
`e^(sqrttanx)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( f(x) = e^{\sqrt{\tan x}} \) using the first principle of derivatives, we follow these steps: ### Step 1: Write the definition of the derivative The derivative of a function \( f(x) \) from first principles is given by: \[ f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \] ### Step 2: Substitute the function into the definition Substituting \( f(x) = e^{\sqrt{\tan x}} \) into the definition, we have: \[ f'(x) = \lim_{h \to 0} \frac{e^{\sqrt{\tan(x+h)}} - e^{\sqrt{\tan x}}}{h} \] ### Step 3: Factor out the common term We can factor out \( e^{\sqrt{\tan x}} \) from the numerator: \[ f'(x) = e^{\sqrt{\tan x}} \lim_{h \to 0} \frac{e^{\sqrt{\tan(x+h)}} - e^{\sqrt{\tan x}}}{h} \] ### Step 4: Use the exponential limit property Using the property of limits, we can rewrite the limit: \[ \lim_{h \to 0} \frac{e^{u} - e^{v}}{h} = e^{v} \cdot \lim_{h \to 0} \frac{e^{u} - e^{v}}{u - v} \cdot \frac{u - v}{h} \] where \( u = \sqrt{\tan(x+h)} \) and \( v = \sqrt{\tan x} \). ### Step 5: Simplify the limit Now we need to find \( u - v \): \[ u - v = \sqrt{\tan(x+h)} - \sqrt{\tan x} \] We can multiply and divide by the conjugate: \[ u - v = \frac{\tan(x+h) - \tan x}{\sqrt{\tan(x+h)} + \sqrt{\tan x}} \] ### Step 6: Substitute back into the limit Substituting back, we have: \[ f'(x) = e^{\sqrt{\tan x}} \cdot \lim_{h \to 0} \frac{\tan(x+h) - \tan x}{h(\sqrt{\tan(x+h)} + \sqrt{\tan x})} \] ### Step 7: Use the derivative of tangent The derivative of \( \tan x \) is \( \sec^2 x \), so: \[ \lim_{h \to 0} \frac{\tan(x+h) - \tan x}{h} = \sec^2 x \] ### Step 8: Combine everything Putting it all together, we get: \[ f'(x) = e^{\sqrt{\tan x}} \cdot \sec^2 x \cdot \frac{1}{2\sqrt{\tan x}} \cdot \lim_{h \to 0} \frac{1}{\sqrt{\tan(x+h)} + \sqrt{\tan x}} \] As \( h \to 0 \), \( \sqrt{\tan(x+h)} \to \sqrt{\tan x} \), thus: \[ \lim_{h \to 0} \frac{1}{\sqrt{\tan(x+h)} + \sqrt{\tan x}} = \frac{1}{2\sqrt{\tan x}} \] ### Final Result Combining all parts, we find: \[ f'(x) = e^{\sqrt{\tan x}} \cdot \sec^2 x \cdot \frac{1}{2\sqrt{\tan x}} \cdot \frac{1}{2\sqrt{\tan x}} = \frac{e^{\sqrt{\tan x}} \sec^2 x}{2 \tan x} \] Thus, the derivative of \( e^{\sqrt{\tan x}} \) is: \[ f'(x) = e^{\sqrt{\tan x}} \cdot \sec^2 x \cdot \frac{1}{2\sqrt{\tan x}} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(g) (SHORT ANSWER TYPE QUESTIONS)|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(g) (LONG ANSWER TYPE QUESTIONS (I))|10 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(f) (LONG ANSWER TYPE QUESTIONS (I))|33 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

Find, from first principle, the derivative of the following w.r.t. x : e^(sqrtx)

Find, from first principle, the derivative of the following w.r.t. x : e^(2x)

Find, from first principle, the derivative of the following w.r.t. x : xe^(x)

Find, from first principles, the derivative of the following w.r.t. x : -x

Find, from first principle, the derivative of the following w.r.t. x : e^(sinx)

Find, from first principles, the derivative of the following w.r.t. x : x^(3)

Find, from first principles, the derivative of the following w.r.t. x : sqrt(x)

Find, from first principle, the derivative of the following w.r.t. x : logx^(2)

Find, from first principle, the derivative of the following w.r.t. x : log(sinx)

Find, from first principle, the derivative of the following w.r.t. x : log(cosx)