Home
Class 12
MATHS
Find, from first principle, the derivati...

Find, from first principle, the derivative of the following w.r.t. x :
`cos(logx),"where "xgt0`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of \( f(x) = \cos(\log x) \) with respect to \( x \) using the first principle of derivatives, we follow these steps: ### Step 1: Write the definition of the derivative The derivative of a function \( f(x) \) at a point \( x \) is defined as: \[ f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \] ### Step 2: Substitute the function into the definition For our function \( f(x) = \cos(\log x) \), we substitute: \[ f'(x) = \lim_{h \to 0} \frac{\cos(\log(x+h)) - \cos(\log x)}{h} \] ### Step 3: Apply the cosine difference identity Using the identity \( \cos A - \cos B = -2 \sin\left(\frac{A+B}{2}\right) \sin\left(\frac{A-B}{2}\right) \), we set \( A = \log(x+h) \) and \( B = \log x \): \[ f'(x) = \lim_{h \to 0} \frac{-2 \sin\left(\frac{\log(x+h) + \log x}{2}\right) \sin\left(\frac{\log(x+h) - \log x}{2}\right)}{h} \] ### Step 4: Simplify the logarithmic expressions Using the property of logarithms, we have: \[ \log(x+h) = \log x + \log\left(1 + \frac{h}{x}\right) \] Thus, \[ \log(x+h) - \log x = \log\left(1 + \frac{h}{x}\right) \] So, \[ f'(x) = \lim_{h \to 0} \frac{-2 \sin\left(\frac{\log x + \log\left(1 + \frac{h}{x}\right)}{2}\right) \sin\left(\frac{\log\left(1 + \frac{h}{x}\right)}{2}\right)}{h} \] ### Step 5: Evaluate the limit As \( h \to 0 \), \( \log\left(1 + \frac{h}{x}\right) \) approaches \( \frac{h}{x} \). Therefore, we can rewrite: \[ \sin\left(\frac{\log\left(1 + \frac{h}{x}\right)}{2}\right) \approx \frac{\frac{h}{2x}}{2} = \frac{h}{4x} \] Thus, we have: \[ f'(x) = \lim_{h \to 0} \frac{-2 \sin\left(\frac{\log x + \log(1)}{2}\right) \cdot \frac{h}{4x}}{h} \] ### Step 6: Cancel \( h \) and finalize the derivative The \( h \) terms cancel out: \[ f'(x) = -\frac{1}{2x} \cdot 2 \sin\left(\log x\right) \] Thus, we arrive at: \[ f'(x) = -\frac{\sin(\log x)}{x} \] ### Final Result The derivative of \( f(x) = \cos(\log x) \) is: \[ f'(x) = -\frac{\sin(\log x)}{x} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(g) (SHORT ANSWER TYPE QUESTIONS)|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(g) (LONG ANSWER TYPE QUESTIONS (I))|10 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(f) (LONG ANSWER TYPE QUESTIONS (I))|33 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

Find, from first principles, the derivative of the following w.r.t. x : -x

Find, from first principle, the derivative of the following w.r.t. x : xe^(x)

Find, from first principle, the derivative of the following w.r.t. x : e^(2x)

Find, from first principles, the derivative of the following w.r.t. x : x^(3)

Find, from first principle, the derivative of the following w.r.t. x : logx^(2)

Find, from first principles, the derivative of the following w.r.t. x : sqrt(x)

Find, from first principle, the derivative of the following w.r.t. x : log(cosx)

Find, from first principle, the derivative of the following w.r.t. x : log(sinx)

Find, from first principle, the derivative of the following w.r.t. x : e^(sinx)

Find, from first principles, the derivative of the following w.r.t. x : (-x)^(-1)