Home
Class 12
MATHS
If x=2costheta-cos2theta,y=2sintheta-sin...

If `x=2costheta-cos2theta,y=2sintheta-sin2theta,"find "dy/dx" at "theta=pi/2`.

Text Solution

AI Generated Solution

The correct Answer is:
To find \( \frac{dy}{dx} \) at \( \theta = \frac{\pi}{2} \), we will use the chain rule, which states that: \[ \frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} \] ### Step 1: Define the functions We are given: \[ x = 2 \cos \theta - \cos 2\theta \] \[ y = 2 \sin \theta - \sin 2\theta \] ### Step 2: Differentiate \( y \) with respect to \( \theta \) To find \( \frac{dy}{d\theta} \), we differentiate \( y \): \[ \frac{dy}{d\theta} = \frac{d}{d\theta}(2 \sin \theta - \sin 2\theta) \] Using the derivatives: - The derivative of \( \sin \theta \) is \( \cos \theta \). - The derivative of \( \sin 2\theta \) is \( 2 \cos 2\theta \) (using the chain rule). Thus, \[ \frac{dy}{d\theta} = 2 \cos \theta - 2 \cos 2\theta \] ### Step 3: Differentiate \( x \) with respect to \( \theta \) Now we differentiate \( x \): \[ \frac{dx}{d\theta} = \frac{d}{d\theta}(2 \cos \theta - \cos 2\theta) \] Using the derivatives: - The derivative of \( \cos \theta \) is \( -\sin \theta \). - The derivative of \( \cos 2\theta \) is \( -2 \sin 2\theta \) (using the chain rule). Thus, \[ \frac{dx}{d\theta} = -2 \sin \theta + 2 \sin 2\theta \] ### Step 4: Evaluate \( \frac{dy}{d\theta} \) and \( \frac{dx}{d\theta} \) at \( \theta = \frac{\pi}{2} \) Now we substitute \( \theta = \frac{\pi}{2} \): 1. For \( \frac{dy}{d\theta} \): \[ \frac{dy}{d\theta} = 2 \cos\left(\frac{\pi}{2}\right) - 2 \cos\left(2 \cdot \frac{\pi}{2}\right) = 2 \cdot 0 - 2 \cdot (-1) = 0 + 2 = 2 \] 2. For \( \frac{dx}{d\theta} \): \[ \frac{dx}{d\theta} = -2 \sin\left(\frac{\pi}{2}\right) + 2 \sin\left(2 \cdot \frac{\pi}{2}\right) = -2 \cdot 1 + 2 \cdot 0 = -2 + 0 = -2 \] ### Step 5: Calculate \( \frac{dy}{dx} \) Now we can find \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{2}{-2} = -1 \] ### Final Answer Thus, the value of \( \frac{dy}{dx} \) at \( \theta = \frac{\pi}{2} \) is: \[ \frac{dy}{dx} = -1 \] ---
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(h) (SHORT ANSWER TYPE QUESTIONS)|11 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(h) (LONG ANSWER TYPE QUESTIONS (I))|20 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(g) (SHORT ANSWER TYPE QUESTIONS)|28 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

If x=cos theta-cos2 theta,y=sin theta-sin2 theta then (dy)/(dx) is

If x=a(costheta+log"tan"theta/2),y=asintheta,"find "dy/dx" at "theta=pi/3 .

x=3costheta-2cos^(3)theta,y=3sintheta-2sin^(3)theta" then find dy/dx at "theta=(pi)/(4)

If x=2cos theta -cos 2theta ,y=2sin theta -sin 2theta ,then (dy)/(dx) =

If x=costheta(1+costheta),y=sintheta(1+costheta)," then "((dy)/(dx))" at "theta=(pi)/(2) is

"If "x=(2costheta-cos 2theta)and y=(2sin theta-sin 2theta)," find "((d^(2))/(dx^(2)))_(theta=(pi)/(2))

If x=sintheta+thetacostheta,y=costheta-thetasintheta," then "((dy)/(dx))" at "theta=(pi)/(2) is

If x=2 cos theta- cos 2 theta and y=2 sin theta - sin 2 theta, then (dy)/(dx) =

If x=3cos theta-2cos^(3)theta,y=3sin theta-2sin^(3)theta, then (dy)/(dx) is

Find (dy)/(dx) , if x=costheta-cos2theta , y=sintheta-sin2theta